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Abstract

The conditions for weak convergence of a sequence of probability measures on
metric spaces of nonlinear operators defined on some subsets of a real separable
Banach space are established. The nonlinear operators of interest include either
continuous operators or cadlag (continu à droite, limites à gauche) operators defined
in this article. As the domains of the operators are certain compact sets, the limiting
probability measures are the generalizations of the Wiener measure and the Poisson
measure on the metric spaces of continuous and cadlag real functions defined on the
unit interval, respectively. As the limiting probability measure is the generalized
Wiener measure, the result is a generalization of Donsker’s theorem.

1 Introduction

Let C([0, 1], R) and D([0, 1], R) be the complete metric spaces of continuous real
functions endowed with the uniform topology (see [4], Chapter 2, p. 80) and cadlag
real functions endowed with the Skorohod topology (see [4], Chapter 3, p. 125)
on the unit interval, respectively. Let C and D be the corresponding Borel σ-fields.
Weak convergence of a sequence of probability measures on either {C([0, 1], R), C} or
{D([0, 1], R),D} given some sufficient conditions has been proved (see [4], Theorem
7.1, Theorem 7.5, and Theorem 13.1). Basically, the tightness of the sequence of
probability measures and weak convergence of the finite-dimensional distributions
are two main conditions. As the limiting measure is the Wiener measure, the
result is Donsker’s theorem (see [4], Theorem 8.2). Further, the limiting probability
measure can be the Poisson measure (see [4], Example 12.3). In addition, weak
convergence theory in D([0, 1], R) can be applied to prove the convergence of the
empirical process to the Brownian bridge (see [4], Theorem 14.3; also see [5], Chapter
1.1).

Relative little has been done for weak convergence of probability measures
on the space of continuous operators, possibly nonlinear, from a subset of a real
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separable Banach space X to a real separable Banach space Y (see [2], p. 30; [16],
Section 1.5) or to the space of certain operators from the subset of the space X
to the space Y , i.e., the results for operator-valued random variables or probability
measures on the space of nonlinear operators. Operator theory has been at the heart
of research in analysis (see [1]). Moreover, as implied by [13], considering nonlinear
case should be essential. The following are some examples related to nonlinear
operators and the results developed in this article. Let X and Y be normed spaces
in these examples.

Example 1. The continuous operators from X into Y .

Example 2. Suppose that the underlying dth order partial differential equation can
be expressed as

D

[
µ, x(µ),

∂x(µ)

∂µ1
, . . . ,

∂|α|x(µ)

∂µα1
j1
· · · ∂µαr

jr

, · · · , ∂
dx(µ)

∂µdp

]
= F (x)(µ)

= 0,

where µ = (µ1, . . . , µp)
t ∈ Rp, p > 1, D is a real or complex function, F :

Dom(F ) ⊂ X → Y is an operator, α = (α1, . . . , αr), |α| =
∑r
k=1 αk ≤ d, αk

are non-negative integers, {j1, . . . , jr} ⊂ {1, . . . , p}, and where Dom(F ) is the do-
main of the operator F . As indicated by [8], the great advantage of interpreting
PDE problem in the operator form is that the general and elegant results of func-
tional analysis can be used to study the solvability of various equations involving the
differential operator. For nonlinear differential equation, the operator might not be
linear. As the underlying equation is not deterministic and is involving some random
quantities, the resulting differential operator is the realization of an operator-valued
random variable.

Example 3. Consider the mathematical programming problem of which goal is to
find the minimizer

F̂ = arg min
F∈S

T (F ),

subject to

gi(F ) ≤ 0, i = 1, . . . , I,

hj(F ) = 0, j = 1, . . . , J,

where S is a subset consisting of nonlinear operators from X into Y and T , gi and
hj are functionals defined on S.

Example 4. One of the fundamental quantities in robustness theory is the Huber
function. One of the generalizations of the Huber function to the infinite dimen-
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sional spaces is F : X → X (see [14]),

F (x) = xmin

[
1,
‖c‖Z1

‖U(x)‖Z2

]
,

if ||U(x)||Z2
6= 0 and F (x) = x if ||U(x)||Z2

= 0, where Z1 and Z2 are normed
spaces, c ∈ Z1 is a bounded function, U : X → Z2 is considered as a continuous
linear operator. Note that F is not a linear operator.

Example 5. Consider the following nonparametric regression model in statistics,

y = F (x) + ε,

where y is a Y -valued random variables, F defined on some subset of X is a Y -
valued nonlinear operator, and ε is a Y -valued random variable. Relatively few
theoretical results such as consistency and weak convergence of the nonlinear esti-
mators (operators) have been established. However, one theorem concerning weak
convergence of the operators of interest (see [15]) is based on the result developed in
this article .

Developing useful results for the operators in the above examples holds promise
for the wide applications of nonlinear functional analysis to a variety of scientific
areas. As considering the measure space of the nonlinear operators, the occurring
problem is when can a sequence of measurable functions on the space converge
in different notions? Weak convergence of a sequence of measures is one mode
of convergence and is one of main research topics in mathematics, particularly
in probability or statistics. Note that weak convergence theory corresponding to
nonlinear operators might also hold the promise for wide applications to the above
examples.

The goal of this article is to establish the conditions for weak convergence
of a sequence of probability measures on the metric space of nonlinear operators
from the possibly unbounded subset of X to the space Y . The proofs for these
results mainly follow the ones of [4]. In next section, the results concerning weak
convergence of a sequence of probability measures on the complete and separable
metric space of continuous operators defined on the compact set of X are given.
The sufficient conditions corresponding to the tightness of the sequence of prob-
ability measures and weak convergence of the finite-dimensional distributions are
established. Furthermore, a sequence of operator-valued random variables is de-
fined and proved to converge in distribution to a random variable of which distri-
bution is the proposed generalized Wiener measure, i.e., the generalization of the
Wiener measure on {C([0, 1], R), C}. Section 3 concerns with weak convergence
corresponding to the cadlag operator defined in this article. In Section 3.1, a met-
ric for the space of cadlag operators is defined. Weak convergence of a sequence
of operator-valued random variables on the metric space to a random variable of
which distribution is the proposed generalized Poisson measure, i.e., the general-
ization of the Poisson measure on {D([0, 1], R),D}, is proved. Moreover, another
metric for the subspace of the metric space in Section 3.1 is defined in Section
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3.2 and the results concerning both completeness and separability of the corre-
sponding metric space are given. Thus, the sufficient conditions analogous to the
ones in the Polish space of continuous operators are established for weak conver-
gence of a sequence of probability measures on the Polish space of cadlag operators.
Since additional lemmas might be required for some theorems and the proofs are
long, the proofs of these theorems in Section 2 and Section 3 are given in Sec-
tion 4 and Section 5, respectively. Note that the extended results for the space of
cadlag operators on some unbounded set along with the proofs of some theorems
and lemmas are delegated to the supplementary materials, which can be found at
http://web.thu.edu.tw/wenwei/www/papers/bnSupplement2016.pdf/ .

Hereafter, let (Ω,Σ, P ) be the probability space on which the random variables
of interest are defined, where Ω is a sample space, Σ is the σ-field of Borel subsets
of Ω, and P is a probability measure on (Ω,Σ). Furthermore, Pf−1, the induced
probability measure on (Ω∗,Σ∗), is defined by Pf−1(A) = P ({x : f(x) ∈ A}), where
f : Ω → Ω∗ is a Borel measurable function and A ∈ Σ∗. As Ω has been specified,
the probability measure P on Σ rather than on (Ω,Σ) is used for succinctness. The
notation || · ||Z is denoted as the norm of the normed space Z. The metric space
with the metric d induced by the norm is d(z1, z2) = ||z1−z2||Z for z1, z2 ∈ Z. Two
results have been extensively used in the proofs. One is Theorem 2.7 of [4] referred
to as the mapping theorem while the other is the lemma given in Section 8.1 of [7]
referred to as the converging together lemma.

2 Weak convergence of probability measures on
metric space of continuous operators

Let K be a compact set of the real separable Banach space X and contain zero
element. Since a compact subset of any metric space is bounded, K is bounded.
Assume that the range of the norm function on K is [0, 1], i.e., 0 ≤ ||x||X ≤ 1, x ∈ K.
Denote B(a, r) and B̄(a, r) as the open ball and closed ball with the center a and
the radius r in a metric space, respectively. Let F : K → Y be the continuous
operator with the domain K and Y be the Borel σ-field of subsets of Y . Note
that F is also bounded. The metric space [C(K,Y ), ρ] of the Y -valued continuous
operators defined on K with the metric

ρ(F1, F2) = sup
x∈K
‖F1(x)− F2(x)‖Y ,

is of interest, where F1, F2 ∈ [C(K,Y ), ρ]. Let [C(K,Y ), ρ] be the Borel σ-field
generated by the open sets of C(K,Y ). Also, let πx1···xk

: C(K,Y ) → Y k be the
natural projection defined by πx1···xk

(F ) = [F (x1), . . . , F (xk)] and Yk be the Borel
σ-field or product σ-field (see [3], Theorem 4.43) of subsets of the product space
Y k, where x1, . . . , xk ∈ K. Note that πx is continuous and thus Borel measurable.
In addition, Y and Y k are both metric spaces with the metrics induced by ‖ · ‖Y
and ‖ · ‖Y k , respectively. The metric space [C(K,Y ), ρ] is separable and complete,
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i.e., a Polish space, by Lemma 3.83 and Lemma 3.85 of [3]. For a Y -valued Radon
Gaussian variable g, let

Σ(g) = sup
||T ||Y ∗≤1,T∈Y ∗

{E{[T (g)]2}}1/2,

where Y ∗ is the topological dual space of Y . In the following, the proposed gener-
alized Wiener measure is defined first.

Definition 2.1. A generalized Wiener measure Wφ, a probability measure on the
space [C(K,Y ), ρ], is the distribution of a C(K,Y )-valued random variable Wφ with
the following properties:
(i) φ : K → [0, 1] is a function with its range equal to the unit interval [0, 1] and
φ(x) = 0 if and only if x = 0.
(ii) Wφ({F : F ∈ C(K,Y ), F (0) = 0}) = 1.
(iii) The random variable Wφ(x) = πx(Wφ) for x 6= 0 under Wφ is a Y -valued
centered Radon Gaussian variable. In other words, for any continuous linear func-
tional T ∈ Y ∗ on Y , T [Wφ(x)] is a real-valued Gaussian variable with mean 0.
Furthermore,

Σ [Wφ(x)] = sup
‖T‖Y ∗≤1,T∈Y ∗

{E{{T [Wφ(x)]}2}}1/2 = [φ(x)]1/2.

(iv) For 0 ≤ φ(x0) ≤ φ(x1) ≤ · · · ≤ φ(xk) ≤ 1, the random variables Wφ(x1) −
Wφ(x0), Wφ(x2)−Wφ(x1),. . . , Wφ(xk)−Wφ(xk−1) are independent under Wφ.

The generalized Wiener measure can be constructed based on the following
results. First, the following theorem establishes the sufficient conditions for the
tightness of a sequence of probability measures {Pn} on [C(K,Y ), ρ], which is one
of main conditions for weak convergence of {Pn}. Let

w(F,∆) = sup
‖x1−x2‖X≤∆

‖F (x1)− F (x2)‖Y

for F ∈ [C(K,Y ), ρ]. Note that the function w(·,∆) on [C(K,Y ), ρ] is continuous
for fixed ∆ and hence measurable with respect to [C(K,Y ), ρ] and R, where R is
the Borel σ-field of subsets of R. Let K∗ be a countable dense subset of K.

Theorem 2.1. If {Pnπ−1
xi
} is relatively compact for each xi ∈ K∗ and there exist

a ∆ and an n0 such that

Pn ({F : w(F,∆) ≥ ε1}) ≤ ε2, n ≥ n0,

for every positive ε1 and ε2, then the sequence of probability measures {Pn} on the
metric space [C(K,Y ), ρ] is tight.

The following two theorems give the sufficient conditions for weak convergence
of the sequence of probability measures {Pn} and the convergence of a sequence of
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C(K,Y )-valued random variables Fn in distribution to a C(K,Y )-valued random
variable F . The notation ⇒ denotes weak convergence or convergence in distribu-
tion.

Theorem 2.2. If Pn is tight and Pnπ
−1
x1···xk

⇒ Qx1···xk
for all x1, . . . , xk in K,

then there exists a probability measure P on the space [C(K,Y ), ρ] with Pπ−1
x1···xk

=
Qx1···xk

such that the sequence of probability measures {Pn} on [C(K,Y ), ρ] con-
verges weakly to P , where Qx1···xk

is a probability measure on (Y k,Yk).

As P is known, a direct result based on Theorem 2.2 is given below. Note that
weak convergence of the finite dimensional distributions of {Pn} to a probability
measure P in a set holds if Pnπ

−1
x1···xk

⇒ Pπ−1
x1···xk

for all x1, . . . , xk in the set.

Corollary 2.1. Let {Pn} and P be probability measures on the space [C(K,Y ), ρ].
If {Pn} is tight and weak convergence of the finite dimensional distributions of {Pn}
to P in K holds, then {Pn} converges weakly to P .

The convergence of a sequence of C(K,Y )-valued random variables Fn in dis-
tribution to a C(K,Y )-valued random variable F can be established based on the
above theorems. Let the random vector

πx1···xk
(F) = [F(x1), . . . ,F(xk)] ,

where F(xi) is the random variable with the value equal to the projection of F at
xi and at every sample point.

Theorem 2.3. If

lim
∆→0

lim sup
n→∞

P [w(Fn,∆) ≥ ε] = 0

for each positive ε and {πx1···xk
(Fn)} converges in distribution to Gx1···xk

for all
x1, . . . , xk in K, then there exists a C(K,Y )-valued random variable F with the
distribution of πx1···xk

(F) equal to the one of the Y k-valued random variable Gx1···xk

such that the sequence of C(K,Y )-valued random variables {Fn} converges in dis-
tribution to the C(K,Y )-valued random variable F .

Proof. Let PFn
be the distribution of Fn. By the equation and Theorem 2.1

then, {PFn
} is tight. By the convergence of {πx1···xk

(Fn)} in distribution to Gx1···xk

for all x1, . . . , xk in K and tightness of {PFn}, the result follows by Theorem 2.2.

♦

The equation in the above theorem, the counterpart of the one given in The-
orem 2.1, is the key for the tightness of the corresponding sequence of probability
measures. The following corollary, a direct result by Theorem 2.3, is a general-
ization of Theorem 7.5 of [4]. Note that the convergence of the finite dimensional
distributions of Fn to F in K holds if {πx1···xk

(Fn)} converges in distribution to
πx1···xk

(F) for all x1, . . . , xk in K.
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Corollary 2.2. Let {Fn} and F be C(K,Y )-valued random variables. If

lim
∆→0

lim sup
n→∞

P [w(Fn,∆) ≥ ε] = 0

for each positive ε and the convergence of the finite dimensional distributions of Fn
to F in K holds, then {Fn} converges in distribution to F .

Based on the above results, a sequence of random variables can be constructed
and its limiting distribution is the generalized Wiener measure. Consider a C(K,Y )-
valued random variable Fn defined by

Fn(x,w) =
Sbnφ(x)c(w)
√
n

+
cn(x)ξbnφ(x)c+1(w)

√
n

,

for w ∈ Ω, where φ is the function given in (i) of Definition 2.1 and assumed to

be continuous, cn(x) = nφ(x) − bnφ(x)c, Sbnφ(x)c =
∑bnφ(x)c
i=1 ξi, S0 = 0, ξi are

independent copies of a Y -valued random variables ξ, and b·c is the Gauss’s floor
function. Given the conditions related to the size of the net for K, the existence of
the generalized Wiener measure can be proved and the generalization of Donsker’s
theorem can be obtained, as indicated by the following theorem. One difference
between (a) and (b) of the theorem is the assumptions imposed on ξ, one being
centered Radon Gaussian and the other satisfying the central limit theorem (CLT),
i.e.,

∑n
i=1 ξi/n

1/2 converging weakly in the Banach space Y (see [10], Chapter 10).
Since the proof of (b) is analogous to the one of (a), the proof is delegated to the
supplementary materials.

Theorem 2.4. Let the function φ satisfy the Lipschitz condition, i.e., there exists
a constant L such that |φ(x1)− φ(x2)| ≤ L||x1 − x2||X for x1, x2 ∈ K.
(a) Suppose that Y is a cotype 2 Banach space (see [10], Chapter 9) and ξ is a
centered Radon Gaussian variable with Σ(ξ) = 1. If there exists a positive number δ
such that for a ∆-net for K, ∆ < δ, the number of points in the net, v, satisfies the
inequality v ≤ h(∆−1)∆−1, then there exists a probability measure Wφ on the metric
space [C(K,Y ), ρ] as given in Definition 2.1, where h is an increasing function,
h(n) = o[n−1 exp(an)] for any positive number a > 0, and where n is a positive
number.
(b) Suppose that the symmetric ξ satisfies

∑n
i=1 ξi/

√
n⇒W, i.e., ξ satisfying CLT,

where W is a Y -valued centered Radon Gaussian variable with Σ(W) = 1. If there
exists a positive number δ and a positive number C such that for a ∆-net for K,
∆ < δ, the number of points in the net, v, satisfies the inequality v ≤ C∆−1, then
the sequence of C(K,Y )-valued random variables {Fn} converges in distribution to
the random variable Wφ.
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3 Weak convergence of probability measures on
metric spaces of cadlag operators

The results in Section 2 are mainly for continuous random operators. However,
the space [C(K,Y ), ρ] might not be suitable for Poisson-type random operators,
i.e, the cadlag random operators. The generalizations of several results given in
Section 12, Section 13 and Section 16 of [4] and [11] are given in this section and
supplementary materials. In Section 3.1 and Section 3.2, the cadlag operators on
compact domains are of interest, while the ones on an unbounded domain are con-
sidered in the supplementary materials. In Section 3.1, the generalized Poisson
measure is defined and a sequence of random variables is constructed and proved to
converge in distribution to an operator-valued random variable having the general-
ized Poisson measure as its distribution. In Section 3.2, a metric playing the role
analogous to the Skorohod metric on D[0, 1] is defined and the associated space of
cadlag operators is proved to be Polish. Then, the sufficient conditions for the tight-
ness of a sequence of probability measures and weak convergence of the sequence
of probability measures are established. Moreover, the results given in Section 3.2
are extended to cadlag operators on the unbounded domain in the supplementary
materials. The relation < in the subset S of X is defined by x1 < x2 provided that
||x1||X < ||x2||X . Note that the relation is a linear order in terms of the equivalence
class [c] = {x : ‖x||X = c, x ∈ S}, where c ∈ R and the equivalence relation is the
equality of the normed values. In this section, the relation is used for the elements
of the subsets of X. The cadlag operator of interest is defined first.

Definition 3.1. Let S be a bounded subset of X and there exist elements x and x in
S such that ||x||X = infx∈S ||x||X and ||x||X = supx∈S ||x||X . The cadlag Y -valued
operator defined on S has the following properties:
(i) The right-hand limit at any x0 in S ∩ {x : ||x||X = ||x||X}c exists and is equal
to F (x0), i.e., for every ε > 0 there is a δ > 0 such that ‖F (x) − F (x0)‖Y < ε for
x ∈ S, x > x0, and ‖x− x0‖X < δ. The notation is defined by

F (x0) = F (x+
0 ) = lim

x→x0,x>x0

F (x).

(ii) The left-hand limit at any x0 in S ∩ {x : ||x||X = ||x||X}c exists, i.e., for every
ε > 0 there is a δ > 0 and a y0 ∈ Y such that ‖F (x)− y0‖Y < ε for x ∈ S, x < x0,
and ‖x− x0‖X < δ. The notation is defined by

y0 = F (x−0 ) = lim
x→x0,x<x0

F (x).

The above Y -valued operator is right-continuous and has left-hand limit on S.
The sum F1 + F2 of two cadlag operators F1 and F2 on S is

(F1 + F2)(x) = F1(x) + F2(x)
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3.1 Generalized Poisson measure

and the scalar product αF of the cadlag operator F on S is

(αF )(x) = αF (x)

for x ∈ S, where α ∈ R.

3.1 Generalized Poisson measure

The compact set K̃1 ⊂ X of interest in this and next subsections has the fol-
lowing property: K̃1 6= {0}, {x : x = cx0/||x0||X , 0 ≤ c ≤ 1} ⊂ K̃1 for any
x0 6= 0 in K̃1, and 0 < ||x0||X ≤ 1. The equivalence classes of interest are
[c] = {x : ‖x||X = c, x ∈ K̃1}, where 0 ≤ c ≤ 1.

In the following, the space of the cadlag Y -valued operators is introduced.
Then, both the Skorohod metric imposed on the space and the generalized Poisson
measure can be defined on the associated measure space.

Definition 3.2. Let D(K̃1, Y ) be the space (or set) of the cadlag Y -valued operators
defined on K̃1 with the following properties:
(i) F is bounded, i.e., ||F ||sup = supx∈K̃1

||F (x)||Y <∞ for F ∈ D(K̃1, Y ).

(ii) {F (x) : ||x||X = 1, x ∈ K̃1} is totally bounded for F ∈ D(K̃1, Y ).

Denote

w1(F, S̃1) = sup
x,x∗∈S̃1

||F (x)− F (x∗)||Y ,

where S̃1 is any subset of K̃1. In addition, let

w
′

1 (F,∆) = inf
{si}

max
i
w1 {F, [si−1, si)} ,

and

w
′

1 (F,∆, x) = inf
{si}

max
i
w1 {F, [si−1, si)x} ,

where {si}, called ∆-sparse, is any sequence satisfying 0 = s0 < s1 < · · · < sk = 1
and min1≤i≤k(si − si−1) > ∆, [a, b) = {x : a ≤ ||x||X < b, x ∈ K̃1}, [a, b)x =

{cx/||x||X : a ≤ c < b} for x ∈ K̃1, and 0 ≤ a < b ≤ 1. Hereafter the interval
notation implicitly corresponds to the one in X and the interval of real numbers
will be described explicitly.

In the following, the Skorohod metric for the cadlag random operators is de-
fined first. The Poisson convergence, the generalized Poisson measure, as weak
convergence of a sequence of probability measures, is given then.

Definition 3.3. Denote Λ1 as a class of functions λ defined on K̃1 with the fol-
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3.1 Generalized Poisson measure

lowing properties:
(i) λ : K̃1 → K̃1 mapping [0, 1]x onto [0, 1]x for x ∈ K̃1, is a strictly increasing
function in terms of paths, i.e., λ(x1) > λ(x2) if x1 > x2, x1, x2 ∈ [0, 1]x, and a
continuous function.
(ii) λ has an inverse λ−1.
(iii) λ(x) = x as ‖x‖X = 1.
The Skorohod function on D(K̃1, Y ) × D(K̃1, Y ) corresponding to the class Λ1 is
defined by

d1(F1, F2) = inf
λ∈Λ1

max (‖λ− I‖sup, ‖F1 − F2λ‖sup)

for F1, F2 ∈ D(K̃1, Y ), where I is the identity map,

||λ− I||sup = sup
x∈K̃1

‖λ(x)− x‖X ,

and F2λ is the composition of the operator F2 and the function λ.

The metric ρ corresponding to the norm is defined by ρ(F1, F2) = ||F1 −
F2||sup = supx∈K ||F1(x)−F2(x)||Y on the space C(K,Y ), where F1, F2 ∈ C(K,Y ).
However, the Skorohod metric can not be induced by the norm on the space
D(K̃1, Y ). Note that [D(K̃1, Y ), d1] being a metric space and the measurability
of the projection operator πx1...xk

, given and proved in Section 5, are required to
define the generalized Poisson measure, where x1, . . . , xk ∈ K̃1. Let [D(K̃1, Y ), d1]
be the Borel σ-field of subsets of [D(K̃1, Y ), d1].

Definition 3.4. A generalized Poisson measure Pφ,α, a probability measure on

the metric space {[D(K̃1, Y ), d1], [D(K̃1, Y ), d1]}, is the distribution of a D(K̃1, Y )-
valued random variable F with the following properties:
(i) φ : K̃1 → [0, 1] is a function with its range equal to the unit interval [0, 1] of real
numbers and φ(x) = 0 if and only if x = 0.
(ii) Pφ,α({F : F ∈ [D(K̃1, Y ), d1], F (0) = 0}) = 1.
(iii) The random variable F(x) = πx(F) for x 6= 0 under Pφ,α is a Y -valued Poisson
variable with mean αφ(x), i.e.,

Pφ,α

({
F : F ∈ D(K̃1, Y ), F (x) ∈ Ai

})
= e−αφ(x) [αφ(x)]

i

i!
, i = 0, 1, 2, . . . ,

and

Pφ,α

({
F : F ∈ D(K̃1, Y ), F (x) ∈ A∗i

})
= 0,

where Ai = {z : ‖z‖Y = i, z ∈ Y } and A∗i ∈ Y is any proper measurable subset of
Ai.
(iv) For 0 ≤ φ(x0) ≤ φ(x1) ≤ · · · < φ(xk) ≤ 1, the random variables F(x1)−F(x0),
F(x2)−F(x1),. . . , F(xk)−F(xk−1) are independent under Pφ,α.
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3.1 Generalized Poisson measure

As Y = R, K̃1 = [0, 1], and φ(x) = x, the generalized Poisson measure is
the Poisson measure on the real-valued Poisson process. The generalized Poisson
measure depends on one more ”parameter” φ than the Poisson measure. Since the
set Ai might have multiple sample points, there may exist two different probabil-
ity measures satisfying the first equation given in condition (iii), but may assign
different probabilities corresponding to the subsets of Ai. The possibility can be
excluded by the second equation in condition (iii).

The proof of next theorem is analogous to Theorem 12.6 of [4]. By imbedding
a set with probability one in Y∞ = Y × Y × · · · endowed with a certain metric
topology and using the Portmanteau theorem (see [4], Theorem 2.1), the result of
weak convergence can be obtained then. Let K̃1c be a countable dense set of K̃1.

Theorem 3.1. If there exists a set E ∈ [D(K̃1, Y ), d1] satisfying that P (E) =
Pn(E) = 1, Fn(x) −→

n→∞
F (x) for all x in K̃1c implies Fn −→

n→∞
F in the Skorohod

topology for F, Fn ∈ E, and weak convergence of the finite dimensional distributions
of {Pn} to P in K̃1c holds, then the sequence of probability measures {Pn} converges
weakly to the probability measure P .

Proof. The metric in Y∞ is defined by

ρ(y∞1 , y∞2 ) =

∞∑
i=1

a−iρ∗(y1i, y2i)

b+ ρ∗(y1i, y2i)
,

for y∞1 = (y11, y12, . . .), y
∞
2 = (y21, y22, . . .) in Y∞, where a > 1, b > 0, and

ρ∗(y1i, y2i) = ‖y1i − y2i‖Y . Let K̃1c = {xi : i = 1, 2, . . .} and π : D(K̃1, Y ) →
Y∞ defined by π(F ) = [F (x1), F (x2), . . .] and πk : Y∞ → Y k by πk(y∞1 ) =
(y11, y12, . . . , y1k).

Next is to prove the measurability of π which can imbed the set of D(K̃1, Y )
into Y∞. Since Y is a Polish space, Y∞ is second-countable and hence separable
by Theorem 30.2 of [12]. Further, because ρ(yn, z) −→

n→∞
0 implies ρ∗(yni, zi) −→

n→∞
0,

πk is continuous and hence Borel measurable. Let the ball (Borel) σ-field of subsets
of Y∞ be Y∞ and let the class of finite-dimensional sets i.e., the sets of the form
π−1
k (S), S ⊂ Yk, be Y∞f . Since πk is Borel measurable, Y∞f ⊂ Y∞. Note that Y∞f

is a π system and there exist open subsets in Y∞f satisfying

N(y∞1 , r∗, k) = {y∞2 : ‖y2i − y1i‖Y < r∗, i = 1, . . . , k, y∞2 ∈ Y∞} ⊂ B(y∞1 , r),

i.e., {N(y∞1 , r∗, k)} being a base for the topology of Y∞, where y∞1 is any element
in Y∞, r > 0, and r∗ < b[(a − 1)r − a−k] by choosing some value of k. Therefore,
Y∞f generates the Borel σ-field Y∞ and is a separating class of Y∞ (see [4], p. 9).

This gives that π is Borel measurable owing to π−1[π−1
k (S)] = π−1

x1...xk
(S).

Finally, because for each y∞1 and r, N(y∞1 , r∗, k) ⊂ B(y∞1 , r), Y∞ is separable,
and the class of boundaries of N(y∞1 , r∗, k), r∗ < b[(a − 1)r − a−k], contains un-
countably many disjoint sets, Y∞f is a convergence-determining class (see [4], p. 18)
of Y∞ by Theorem 2.4 of [4]. Thus, since weak convergence of the finite dimensional

11



3.1 Generalized Poisson measure

distributions of {Pn} to P in K̃1c holds, Pnπ
−1 ⇒ Pπ−1 by the fact that Y∞f is both

the separating and convergence-determining class of Y∞. The proof then follows
along with the lines given in the second paragraph of the proof of Theorem 12.6 of
[4] by replacing R∞ with Y∞ and (D,D) with {[D(K̃1, Y ), d1], [D(K̃1, Y ), d1]}.

♦

Note that the conditions P (E) = Pn(E) = 1 and pointwise convergence im-
plying convergence in the Skorohod topology play the similar role to the tightness
of {Pn}. For a real-valued Poisson process, it is a limit of a sequence of random
functions based on the sum of Bernoulli random variables (see [4], Example 12.3).
Analogous result follows for a sequence of random operators defined as follows. For
each n, x ∈ K̃1, and w ∈ Ω,

Fn(x,w) =
∑

j≤bnφ(x)c

ξnj(w)

as x 6∈ [1] and

Fn(x,w) =
∑

j≤(n−1)

ξnj(w),

as x ∈ [1], where ξnj , j = 1, 2, . . ., are independent copies of a Y -valued Bernoulli
random variables ξ taking values y and 0 with probabilities α/n and 1 − α/n,
respectively, φ(x) = ||x||X , and where ‖y‖Y = 1. Let zi = iy, i = 0, 1, . . .. Note
that the sample paths Fn of Fn take values on zi. The following corollary indicates
the convergence of the sequence of random operators in distribution to the random
element with the generalized Poisson measure as its distribution.

Corollary 3.1. Let F be the D(K̃1, Y )-valued random variable having the following
properties:
(i) The distribution of F is the generalized Poisson measure given in Definition 3.4
with φ(x) = ||x||X and Ai consisting of only one point zi.
(ii) The sample paths of F are nondecreasing operators which take values on zi,
take the same value at the points in the same equivalence class, and the jumps at
the points of discontinuity are equal to 1, i.e., for w ∈ Ω, F(x1, w) = zi,F(x2, w) =
zj , i ≤ j, F(x,w) = F(x∗, w), and ‖F(xd, w)‖Y − ‖F(x−d , w)‖Y = 1 provided that
||x1||X ≤ ||x2||X , ‖x‖X = ‖x∗‖X , and F(·, w) is discontinuous at xd.
(iii)

P (F(x)−F(x−) 6= 0, x ∈ [1]) = 0.

Then, {Fn} converges in distribution to F .

Proof. Let E ∈ [D(K̃1, Y ), d1] and any F in E be a nondecreasing cadlag
operator, have jumps of exactly 1 at its points of discontinuity, only take values

12



3.1 Generalized Poisson measure

on the set {zi} and take the same value at the points in the equivalence class,
F (0) = 0 , and have no jump at [1]. Since all sample paths of Fn are in the set
E and F has properties (i), (ii), and (iii), the condition P (E) = Pn(E) = 1 in
Theorem 3.1 holds. The point convergence for F ∈ E implying the convergence
in the Skorohod topology is proved as follows. Suppose that Fn(x) −→

n→∞
F (x) for

x ∈ K̃1c and Fn, F ∈ E. Since there are at most finitely many equivalence classes at
which the jumps ||F (x)−F (x−)||Y exceed a given positive number by the equation
lim∆→0 w

′

1 (F,∆) = 0 and the jump is 1, F has only finitely many discontinuity
classes [t1], . . . , [tk] (see Remark 2 in Section 5.1). Let Kεi = {x : ti − ε ≤ ||x||X ≤
ti + ε} for any given positive ε, i.e., x ∈ [ti− ε, ti + ε], and ti < 1. Then, for n > n0,
Fn must have a single jump class in each Kεi and agree with F in K̃1 ∩ (∪iKεi)

c.
Since d1(Fn, F ) = d1(F, Fn), it suffices to consider that the jump classes [tni] of Fn
satisfy tni > ti. Then, Fn(x) = F (x) as x ∈ Kεi, ||x||X < ti, and ||x||X ≥ tni. If

λn(x) =

{
xa(ti−ε) + ε−1‖x− xa(ti−ε)‖X(xatni

− xa(ti−ε)), x ∈ [ti − ε, ti)xa

xatni
+ ε−1‖x− xati‖X(xa(ti+ε) − xatni

), x ∈ [ti, ti + ε]xa

for x ∈ [ti− ε, ti+ ε]xa
and every xa in K̃1, then λn(xati) = xatni

, ||λn− I||sup ≤ 2ε,
and Fn[λn(x)] = F (x), where xat = txa/||xa||X , 0 ≤ t ≤ 1. Thus, {Fn} converges
to F in the Skorohod topology. Therefore, the condition that pointwise convergence
implies convergence in the Skorohod topology in Theorem 3.1 holds.

It remains to prove that weak convergence in terms of the finite-dimensional
distributions, i.e., the last condition given in Theorem 3.1, holds. Since Fn(x) =∑
j≤bnφ(x)c ξnj , x 6∈ [1], is a binomial random variables B(bnφ(x)c, α/n) taking

values on zi, i.e.,

P [Fn(x) = zi] =

(
bnφ(x)c

i

)(α
n

)i (
1− α

n

)bnφ(x)c−i
,

{Fn(x)} converges in distribution to the random variable F(x) under Pφ,α with
Ai = {zi} by Poisson convergence and property (i) of F . Note that the Pois-
son convergence also holds for Fn(x), x ∈ [1]. Furthermore, because Fn(x1) =∑
j≤bnφ(x1)c ξnj and Fn(x2) − Fn(x1) =

∑
bnφ(x2)c<j≤bnφ(x2)c ξnj are independent,

{[Fn(x1),Fn(x2)−Fn(x1)]} converges in distribution to [F(x1),F(x2)−F(x1)] by
the Poisson convergence and the mapping theorem, where F(x1) and F(x2)−F(x1)
are independent under Pφ,α. Finally, {[Fn(x1),Fn(x2)]} converges in distribution
to [F(x1),F(x2)] by employing the mapping theorem again. The convergence of
{[Fn(x1), . . . ,Fn(xk)]} in distribution to [F(x1), . . . ,F(xk)] can be proved analo-
gously.

♦
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3.2 Cadlag operators with a compact domain

3.2 Cadlag operators with a compact domain

The Poisson convergence is a special case of the general weak convergence theory
on the space D(K̃1, Y ). In the following, several theorems concerning the suffi-
cient conditions for weak convergence of a sequence of probability measures on
D◦(K̃1, Y ), the subset of D(K̃1, Y ), are given. Separability and completeness of
the space D◦(K̃1, Y ) in the sense of a suitable metric are crucial for the tightness
of the sequence of probability measures, which is one of the sufficient conditions
for weak convergence of the sequence of probability measures. However, the space
[D◦(K̃1, Y ), d1] might not be complete. By defining another metric d◦1, the space
can be separable and complete as the space of real-valued cadlag functions on the
unit interval [0, 1] of real numbers. The class of functions corresponding to the new
metric is defined first.

Definition 3.5. Let Λ◦1 be the subset of Λ1 with property (i) given in Definition
3.3 replaced with the following property:
(i)∗ λ : K̃1 → K̃1, mapping [0, 1]x to [0, 1]x for x ∈ K̃1, is a strictly increasing
function, i.e., λ(x1) > λ(x2) if x1 > x2, x1, x2 ∈ K̃1, and a continuous function.

Denote the function

w
′′

1 (F,∆) = max

{
w
′

1(F,∆),max
q
w1 [F,B∗(xq1,∆)]

}
,

where {xq1} is a ∆-net for the equivalence class [1], {xq1} ⊂ [1], B∗(xq1,∆) ⊂
{B(xq1,∆) ∩ [1]}, ∪qB∗(xq1,∆) = [1], and the sets B∗(xq1,∆) are disjoint.

Definition 3.6. Let D◦(K̃1, Y ), the subset of D(K̃1, Y ), have the following prop-
erty: For F ∈ D◦(K̃1, Y ), the equation

lim
∆→0

w
′′

1 (F,∆) = 0

holds.
In addition, the Skorohod functions on D◦(K̃1, Y )×D◦(K̃1, Y ) corresponding to the
class Λ◦1 are defined by

d∗1(F1, F2) = inf
λ∈Λ◦1

max {‖λ− I‖sup, ‖F1 − F2λ‖sup}

and

d◦1(F1, F2) = inf
λ∈Λ◦1

max

{
sup

x∗<x,x∗,x∈K̃1

∣∣∣∣log

[
‖λ(x)‖X − ‖λ(x∗)‖X
‖x‖X − ‖x∗‖X

]∣∣∣∣ ,
‖λ− I‖sup, ‖F1 − F2λ‖sup}

for F1, F2 ∈ D◦(K̃1, Y ).

Note that d∗1 and d◦1 are metrics. The routine proof of d∗1 and d◦1 being metrics is

14



not presented. The function w
′′

1 plays the role similar to w in Section 2. The function
w
′′

1 (·,∆) on [D◦(K̃1, Y ), d◦1] is measurable with respect to [D◦(K̃1, Y ), d◦1] and R for
fixed ∆ owing to w

′

1(·,∆) being upper semicontinuous and maxq w1 [·, B∗(xq1,∆)]

being continuous on [D◦(K̃1, Y ), d◦1]. A special example of D◦(K̃1, Y ) is D([0, 1], R).
As K̃1 is one-dimensional, for example, the unit interval [0, 1] of real numbers,
w
′′

1 = w
′

1. As D◦(K̃1, Y ) = D([0, 1], R), the function maxq w1[F,B∗(xq1,∆)] is not
required for the development of weak convergence theory. Note that the property
in the above definition is associated with separability of the space D◦(K̃1, Y ).

Similar to the metric space of interest in Section 2, [D◦(K̃1, Y ), d◦1] is a Polish
space as indicated by the following theorem. The long proof of the theorem is
delegated to the supplementary materials.

Theorem 3.2. The metric space [D◦(K̃1, Y ), d◦1] is separable and complete, i.e., a
Polish space.

In the following, the theorems concerning both the tightness and weak conver-
gence of a sequence of probability measures of interest are the counterparts of the
ones in Section 2. First, the theorem below gives the sufficient conditions for the
tightness of the sequence of probability measures. Let K̃∗1c be a countable dense set
of K̃1 and contains a countable dense set of the equivalence class [1].

Theorem 3.3. If {Pnπ−1
xi
} is relatively compact for each xi ∈ K̃∗1c and for every

positive ε1 and ε2 there exist a ∆ and an n0 such that

Pn

({
F : w

′′

1 (F,∆) ≥ ε1
})
≤ ε2, n ≥ n0,

then the sequence of probability measures {Pn} on [D◦(K̃1, Y ), d◦1] is tight.

The next theorem gives the sufficient conditions for weak convergence of the
sequence of probability measures. Let K̃∗1P be a set of x such that πx on ei-
ther [D◦(K̃1, Y ), d∗1] or [D◦(K̃1, Y ), d◦1] is continuous except the set of points of
P -measure 0.

Theorem 3.4. If {Pn} is tight and weak convergence of the finite dimensional
distributions of {Pn} to a probability measure P in K̃∗1P holds, then the sequence of
probability measures {Pn} on [D◦(K̃1, Y ), d∗1] or [D◦(K̃1, Y ), d◦1] converges weakly to
P .

4 Proofs of main theorems in Section 2

For succinctness, the argument w ∈ Ω corresponding to a random variable has been
suppressed, for example, F(x,w) being replaced with F(x).
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4.1 Theorem 2.1

4.1 Theorem 2.1

4.1.1 Lemmas used for proving Theorem 2.1

The theorem which establishes the sufficient conditions for the tightness of the
sequence of probability measures {Pn} on [C(K,Y ), ρ] is based on the following
two lemmas. The first lemma gives the sufficient and necessary conditions for the
characterization of a relatively compact set in [C(K,Y ), ρ].

Lemma 4.1. A set A in C(K,Y ) is relatively compact if and only if the following
conditions hold:
(i) The set Ai = {πxi(F ) : F ∈ A} is relatively compact for each xi ∈ K∗.
(ii)

lim
∆→0

sup
F∈A

w(F,∆) = 0.

Proof. Since A is relatively compact, it is totally bounded. Thus, for ε > 0,
there exists a finite ε-net {Fj,ε, j = 1, . . . , n} for A such that ρ(Fj,ε, F ) < ε for any
F in A and some j. Then, {πxi

(Fj,ε), j = 1, . . . , n} is an ε-net for Ai because

‖πxi
(Fj,ε)− πxi

(F )‖Y ≤ ρ(Fj,ε, F ) < ε.

Therefore, Ai is totally bounded in Y . Since Y is complete, Ai is relatively compact
thus. To prove that condition (ii) holds, let {Fj,ε/3, j = 1, . . . ,m} be a finite ε/3-
net, i.e., ρ(Fj,ε/3, F ) < ε/3 for any F in A and some j. Since K is compact, every
Fj,ε/3 in the net is uniformly continuous on K and hence there exists a ∆ such that
||Fj,ε/3(x) − Fj,ε/3(x∗)||Y < ε/3 for any Fj,ε/3 in the net and for ||x − x∗||X < ∆.
Then,

‖F (x)− F (x∗)‖Y ≤ 2ρ(F, Fj,ε/3) + ‖Fj,ε/3(x)− Fj,ε/3(x∗)‖Y < ε.

This gives that A is uniformly equicontinuous and condition (ii) holds.

Conversely, by condition (ii), given ε > 0, there exists a ∆ such that w(F,∆) <
ε/3 for all F in A. Further, choose in K∗ a finite ∆-net {x1, . . . , xk} for K and
hence there exists a xi such that ||x − xi||X < ∆ and ||Fn(x) − Fn(xi)||Y < ε/3
for any x in K and any sequence {Fn} in A. Next, by condition (i), there exists a
subsequence {F ∗n} of {Fn} such that {F ∗n(x)} converges to a limit for any x in K∗.
Thus, there exists an N such that for n,m > N , ||F ∗n(xi)− F ∗m(xi)||Y < ε/3 for all
xi. Then, for any x in K,

‖F ∗n(x)− F ∗m(x)‖Y
≤ ‖F ∗n(x)− F ∗n(xi)‖Y + ‖F ∗n(xi)− F ∗m(xi)‖Y + ‖F ∗m(xi)− F ∗m(x)‖Y
< ε,

and hence ρ(F ∗n , F
∗
m) < ε. {F ∗n} is a Cauchy sequence in the Polish space [C(K,Y ), ρ]
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and this gives that A is relatively compact.

♦

Remark 1. The sufficient and necessary conditions for a set of continuous func-
tions to be totally bounded on a compact metric space are uniform boundedness and
uniform equicontinuity (see [4], Theorem 7.2; [6], Theorem 2.4.7). Condition (ii)
in the above lemma results in the uniform equicontinuity over A, while condition
(i) corresponds to the one in a more general version of Ascoli’s theorem (see [12],
Theorem 47.1).

The following lemma establishes the condition for the existence of a sequence
of probability measures Pn of which values as close to 1 as possible on the set A
satisfying condition (i) in the above lemma.

Lemma 4.2. If the sequence of probability measures {Pn} on [C(K,Y ), ρ] satisfies
that {Pnπ−1

xi
} is relatively compact for each xi ∈ K∗, there exists a measurable set

A such that the set Ai = {πxi(F ) : F ∈ A} is relatively compact for each xi ∈ K∗
and Pn(A) ≥ 1− ε for every ε > 0 and each n.

Proof. Because Y is complete and separable and the sequence of probability
measures {Pnπ−1

xi
} is relatively compact, {Pnπ−1

xi
} is tight by Prohorov’s theorem

(see [4], Section 5) and there exists a compact set Si ⊂ Y such that Pnπ
−1
xi

(Si) ≥
1−ε/2i,i = 1, 2, . . ., for each n and any ε > 0. Let the measurable setA = ∩iπ−1

xi
(Si).

Then,

Pn(A)

= 1− Pn
{
∪i
[
π−1
xi

(Si)
]c}

≥ 1−
∑
i

Pn

{[
π−1
xi

(Si)
]c}

≥ 1− ε.

Finally, Ai = {πxi
(F ) : F ∈ A} ⊂ Si and hence the closure of Ai is compact, i.e.,

Ai being relatively compact.

♦

4.1.2 Proof for Theorem 2.1

By Lemma 4.2, there exists a measurable set A satisfying that the set Ai = {πxi
(F ) :

F ∈ A} for each xi in K∗ and i = 1, 2, . . ., is relatively compact and Pn(A) ≥
1 − ε/2 for all n and every ε > 0. By the inequality for Pn, choose ∆1k so that
B1k = {F : w(F,∆1k) < 1/k}, k = 1, . . . , and Pn(B1k) ≥ 1 − ε/2k+1 for n ≥ n0,
where n0 depends on B1k. Since [C(K,Y ), ρ] is Polish, any probability measure
defined on [C(K,Y ), ρ] is tight. Thus, there exists a compact set B2k such that
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4.2 Theorem 2.2

Pn(B2k) ≥ 1− ε/2k+1 for n < n0. Further, by Lemma 4.1, there exists a ∆2k such
that B2k ⊂ {F : w(F,∆2k) < 1/k}. Therefore, Pn(Bk) ≥ 1 − ε/2k+1 for all n,
where Bk = {F : w(F,∆k) < 1/k}, k = 1, . . . , and ∆k = min(∆1k,∆2k). The set
A ∩ (∩kBk) satisfies conditions (i) and (ii) given in Lemma 4.1, i.e., the set being
relatively compact. Let the compact set K1 be the closure of A ∩ (∩kBk). Then,

Pn(K1)

≥ 1− Pn [Ac ∪ (∩kBk)c]

≥ 1−

[
Pn(Ac) +

∞∑
k=1

Pn(Bck)

]
≥ 1− ε.

for all n.

4.2 Theorem 2.2

4.2.1 Lemma used for proving Theorem 2.2

Because the space [C(K,Y ), ρ] is separable, the ball σ-field generated by the open
balls and the Borel σ-field are identical. The following lemma indicates that the
cylinder σ−field σ(πx : x ∈ K) (see [9], p. 16), i.e., the σ-field generated by the
class of sets {π−1

x (S) : S ∈ Y, x ∈ K}, is the Borel σ−field of subsets of [C(K,Y ), ρ].
In addition, this lemma also indicates that the class of finite-dimensional sets
{π−1

x1···xk
(S) : S ∈ Yk} is a separating class (see [4], p. 9) for the Borel σ-field

[C(K,Y ), ρ].

Lemma 4.3. σ(πx : x ∈ K) = [C(K,Y ), ρ] and the class of finite-dimensional sets
{π−1

x1···xk
(S) : S ∈ Yk} is a separating class of [C(K,Y ), ρ], where x1, . . . , xk ∈ K.

Proof. πx is Borel, i.e., for each B in Y, π−1
x (B) = {F : F (x) ∈ B} ∈

[C(K,Y ), ρ]. Therefore, σ(πx : x ∈ K) ⊂ [C(K,Y ), ρ].

On the other hand, for any F0 in C(K,Y ) and ε > 0,

B̄(F0, ε) = {F : ρ(F, F0) ≤ ε} = ∩x∈K∗
{
F : F (x) ∈ B̄ [F0(x), ε]

}
.

This implies that the closed ball in [C(K,Y ), ρ] falls in the cylinder σ-field σ(πx :
x ∈ K) and the ball σ-field is a subset of σ(πx : x ∈ K) then. Because [C(K,Y ), ρ]
is separable, the Borel σ-field [C(K,Y ), ρ] is the ball σ-field and also a subset of
σ(πx : x ∈ K) thus, i.e., [C(K,Y ), ρ] ⊂ σ(πx : x ∈ K). Therefore, σ(πx : x ∈ K) =
[C(K,Y ), ρ].

{π−1
x1···xk

(S) : S ∈ Yk} ⊂ [C(K,Y ), ρ] because πx1···xk
is continuous and hence

measurable with respect to [C(K,Y ), ρ] and Yk. Further, because the class of finite-
dimensional sets {π−1

x1···xk
(S) : S ∈ Yk} is a π system and generates the cylinder

σ−field, it is a separating class owing to the Borel σ-field [C(K,Y ), ρ] being the
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4.3 Theorem 2.4 (a)

cylinder σ−field σ(πx : x ∈ K).

♦

4.2.2 Proof of Theorem 2.2

Since {Pn} is tight, it is relatively compact by Prohorov’s theorem. Thus, there
exists a further subsequence {Pni(m)

} of every subsequence {Pni
} of {Pn} converges

weakly to a probability measure P . Then, {Pni(m)
π−1
x1···xk

} converges weakly to

Pπ−1
x1···xk

by the mapping theorem and hence Pπ−1
x1···xk

= Qx1···xk
. Since the class of

finite-dimensional sets is a separating class of [C(K,Y ), ρ] by Lemma 4.3, the result
follows by Theorem 2.6 of [4].

4.3 Theorem 2.4 (a)

{Fn} satisfying the conditions given in Theorem 2.3 is proved. The following lemma
indicates that {Fn} satisfies the equation

lim
∆→0

lim sup
n→∞

P [w(Fn,∆) ≥ ε] = 0,

given in Theorem 2.3.

4.3.1 Lemma used for proving Theorem 2.4 (a)

In the following lemma, Y is a real separable Banach space, not necessarily a cotype
2 Banach space.

Lemma 4.4. The sequence of C(K,Y )-valued random variables {Fn} satisfies the
condition

lim
∆→0

lim sup
n→∞

P [w(Fn,∆) ≥ ε] = 0,

given in Theorem 2.3.

Proof. The following inequality is proved first,

P [w(Fn,∆) ≥ 2ε1] ≤
v∑
i=1

P

[
sup

s∈B(xi,2∆)

‖Fn(s)−Fn(xi)‖Y ≥ ε1

]
,

for given ε1 > 0, where 0 ≤ ||x1||X ≤ · · · ≤ ||xv||X ≤ 1 and {xi : i = 1, . . . , v} is a
finite ∆-net for K. As ||s−x||X ≤ ∆, s and x fall in some neighborhood B(xi, 2∆)
because there exists a xi such that ||x− xi||X < ∆ and hence

‖s− xi‖X ≤ ‖s− x‖X + ‖x− xi‖X < 2∆.
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4.3 Theorem 2.4 (a)

Then,

‖F (s)− F (x)‖Y ≤ ‖F (s)− F (xi)‖Y + ‖F (xi)− F (x)‖Y

and hence

w(F,∆) ≤ 2 max
1≤i≤v

sup
s∈B(xi,2∆)

‖F (s)− F (xi)‖Y .

The objective inequality is obtained by

P [w(Fn,∆) ≥ 2ε1]

≤ P

[
max

1≤i≤v
sup

s∈B(xi,2∆)

‖Fn(s)−Fn(xi)‖Y ≥ ε1

]

≤
v∑
i=1

P

[
sup

s∈B(xi,2∆)

‖Fn(s)−Fn(xi)‖Y ≥ ε1

]
.

Based on the above inequality, the next step is to prove the inequality

P [w(Fn,∆) ≥ 2ε1] ≤ v

[
6P

(
max
k≤m
‖Sk‖Y ≥

n1/2ε1
3

)
+ P

(
‖ξ‖Y ≥

n1/2ε1
3

)]
,

where Sk =
∑k
i=1 ξi and m = b2nL∆c. Because

Fn(s)−Fn(xi)

=

(
Sbnφ(s)c − Sbnφ(xi)c

)
n1/2

+
cn(s)ξbnφ(s)c+1

n1/2
−
cn(xi)ξbnφ(xi)c+1

n1/2

and by the Lipschitz condition imposed on φ,

|nφ(s)− nφ(xi)| ≤ nL‖s− xi‖X < 2nL∆,

the set in the sample space satisfies{
sup

s∈B(xi,2∆)

||Fn(s)−Fn(xi)||Y ≥ ε1

}

⊂

{{
sup

s∈B(xi,2∆)

∣∣∣∣∣
∣∣∣∣∣
(
Sbnφ(s)c − Sbnφ(xi)c

)
n1/2

∣∣∣∣∣
∣∣∣∣∣
Y

≥ ε1
3

}

∪

{
sup

s∈B(xi,2∆),s6=xi

‖ξj1(s)+1‖Y
n1/2

≥ ε1
3

}
∪
{
‖ξj2+1‖Y
n1/2

≥ ε1
3

}}
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⊂
{{

max
max(0,j2−m)<k≤j2

∣∣∣∣∣∣∣∣Sk − Sj2n1/2

∣∣∣∣∣∣∣∣
Y

≥ ε1
3

}
∪
{

max
j2<k≤(j2+m)

∣∣∣∣∣∣∣∣Sk − Sj2n1/2

∣∣∣∣∣∣∣∣
Y

≥ ε1
3

}
∪
{

max
max(0,j2+1−m)≤k<j2+1

‖ξk‖Y
n1/2

≥ ε1
3

}
∪
{

max
j2+1<k≤(j2+1+m)

‖ξk‖Y
n1/2

≥ ε1
3

}
∪
{
‖ξj2+1‖Y
n1/2

≥ ε1
3

}}
,

where j1(s) = bnφ(s)c and j2 = bnφ(xi)c. By Proposition 2.3 of [10] and subaddi-
tivity, the inequality holds.

To complete the proof, the Etemadi’s inequality (see [4], M19) can be general-
ized for the Y -valued random variable, i.e.,

P

(
max
k≤m
‖Sk‖Y ≥ 3ε1

)
≤ 3 max

k≤m
P (‖Sk‖Y ≥ ε1) .

Then, by the Etemadi’s inequality, Lemma 3.1 of [10], and the condition for the size
of the net for K,

P [w(Fn,∆) ≥ 2ε1]

≤ v

[
6P

(
max
k≤m
‖Sk‖Y ≥

n1/2ε1
3

)
+ P

(
‖ξ‖Y ≥

n1/2ε1
3

)]
≤ 42Lnh(∆−1)

m
max
k≤m

P

(
‖Sk‖Y ≥

n1/2ε1
9

)
≤ 3402Lλ2h(∆−1)

ε21
max
k≤m

P
(
‖Sk‖Y ≥ m1/2λ

)
=

3402Lλ2h(∆−1)

ε21
max
k≤m

P
(
‖k−1/2Sk‖Y ≥ m1/2k−1/2λ

)
≤

3402Lλ2h
(

162Lλ2

ε21

)
exp

{
−[λ−M(ξ)−1]2

2[Σ(ξ)]2

}
ε21

,

for ∆ < δ, where M(ξ) is the median of ||ξ||Y , k−1/2Sk is centered Radon Gaussian
owing to ξ being centered Radon Gaussian and λ = 9−1m−1/2n1/2ε1. By the
condition for the size of the net for K again, given ε1 and ε2, there exist a ∆0

associated with a λ0 and an n0 such that

P [w(Fn,∆0) ≥ 2ε1] ≤ ε2, n ≥ n0.

♦
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4.3.2 Proof of Theorem 2.4 (a)

By Lemma 4.4, the equation in Theorem 2.3 holds. The convergence of the finite-
dimensional distributions of Fn to those of the random variable having a generalized
Wiener measure given in Definition 2.1 as its distribution is proved as follows.

If x = 0, {Fn(0) = 0} converges in distribution toWφ(0). If x 6= 0 and cn(x) =
0, Fn(x) is a centered Radon Gaussian variable with Σ[Fn(x)] = (bnφ(x)c/n)1/2.
Then, {Fn(x)} converges in distribution to a centered Radon Gaussian variable
Wφ(x) with Σ[Wφ(x)] = [φ(x)]1/2 owing to Y being a cotype 2 Banach space and by
employing Theorem 10.7 of [10] first and then the converging together lemma. If x 6=
0 and cn(x) 6= 0, Fn(x) = Sbφ(x)c/n

1/2+ξ∗n(x), where ξ∗n(x) = cn(x)ξbnφ(x)c+1/n
1/2.

By Lemma 3.1 of [10], for any ε1 > 0 and ε2 > 0, there exists an n0 such that for
n > n0

P (‖ξ∗n(x)‖Y > ε1)

≤ P

[
|‖ξ‖Y −M(ξ)| > n1/2ε1

cn(x)
−M(ξ)

]

≤ exp


−
[
n1/2ε1
cn(x) −M(ξ)

]2
2[Σ(ξ)]2


< ε2.

Because {Sbφ(x)c/n
1/2} converges in distribution to a centered Radon Gaussian

variable Wφ(x) with Σ[Wφ(x)] = [φ(x)]1/2, {Fn(x)} converges in distribution to
the centered Radon Gaussian variable Wφ(x) by the converging together lemma.

To prove that {Fn(x)} and {Fn(y)−Fn(x)} converge in distribution toWφ(x)
and Wφ(y) − Wφ(x), respectively, let φ(y) ≥ φ(x), where Wφ(x) and Wφ(y) are
centered Radon Gaussian variables and Wφ(y) −Wφ(x) is independent of Wφ(x).
Since both Sbnφ(y)c/n

1/2 and Sbnφ(x)c/n
1/2 are centered Radon Gaussian variables,

(Sbnφ(y)c−Sbnφ(x)c)/n
1/2 independent of Sbnφ(x)c/n

1/2, and {cn(y)ξbnφ(y)c+1/n
1/2}

and {cn(x)ξbnφ(x)c+1/n
1/2} converge to 0 in probability as n→∞, {[Fn(x),Fn(y)−

Fn(x)]} converges in distribution to [Wφ(x),Wφ(y)−Wφ(x)] by the mapping the-
orem and the converging together lemma. By employing the mapping theorem
again, {[Fn(x),Fn(y)]} converges in distribution to [Wφ(x),Wφ(y)]. By the analo-
gous argument, it can be proved that {[Fn(x1), . . . ,Fn(xk)]} converges in distribu-
tion to [Wφ(x1), . . . ,Wφ(xk)] , where φ(x1) ≤ · · · ≤ φ(xk) and Wφ(x1),Wφ(x2) −
Wφ(x1), . . . ,Wφ(xk) − Wφ(xk−1) are independent. Thus, by Theorem 2.3, {Fn}
converges in distribution to the random variable Wφ and the distribution of Wφ is
the generalized Wiener measure Wφ.
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5 Proofs of main theorems in Section 3

5.1 Basic lemmas in Section 3

The following three lemmas are useful for the proofs of the main theorems in Sec-
tion 3. The first lemma indicates that the operators in D(K̃1, Y ) can not ”jump”
uncountably along every path [0, 1]x = {cx/||x||X : 0 ≤ c ≤ 1}.

Lemma 5.1. For each F in D(K̃1, Y ),

lim
∆→0

w
′

1 (F,∆, x) = 0,

for any x ∈ K̃. Further, if

lim
∆→0

w
′

1 (F,∆) = 0,

the following equation

lim
∆→0

sup
x∈K̃1

w
′

1 (F,∆, x) = 0

holds.

Proof. By the proof analogous to Lemma 1 of Section 12 of [4] and the
arguments in the section, lim∆n→0 w

′

1 (F,∆n, x) = 0 for any x in K̃1, where ∆n → 0
as n→∞.

Next is to prove that the equation lim∆→0 w
′

1 (F,∆) = 0 implies the equation
lim∆→0 supx∈K̃1

w
′

1 (F,∆, x) = 0. Because w
′

1(F,∆, x) ≤ maxi w1{F, [si−1, si)x},

sup
x∈K̃1

w
′

1 (F,∆, x) ≤ sup
x∈K̃1

max
i
w1 {F, [si−1, si)x} ≤ max

i
w1{F, [si−1, si)},

for any ∆-sparse division {si}. The result holds thus.

♦

Remark 2. The first two equations in Lemma 5.1 indicate the difference between
D(K̃1, Y ) and D([0, 1], R) (see [4], Lemma 1, p. 122), i.e., the first equation satis-
fied in D(K̃1, Y ) and the second equation satisfied in D([0, 1], R). Because

w
′

1 (F,∆) = inf
{si}

max
i

sup
x∈K̃1

w1 {F, [si−1, si)x} ,

it implies that the division {si} is path independent, i.e., not relying on the separate
path [0, 1]x. In addition, the first equation implies that there are only countably many
discontinuities along every path [0, 1]x. On the other hand, the second equation
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5.1 Basic lemmas in Section 3

indicates that there are only countably many discontinuous equivalence classes. As
X is one-dimensional, the two equations are equivalent. In addition, the cadlag
operator in D(K̃1, Y ) satisfying the third equation also satisfies the first equation.

The second lemma indicates that [D(K̃1, Y ), d1] is a metric space. Since the
proof is quite routine and not presented.

Lemma 5.2. d1 is a metric on D(K̃1, Y ) and hence [D(K̃1, Y ), d1] is a metric
space.

The third lemma indicates the measurability of the projection function πx1...xk
.

Lemma 5.3. πx1...xk
: [D(K̃1, Y ), d1] → Y k is measurable with respect to the σ-

fields [D(K̃1, Y ), d1] and Yk, i.e., a Borel measurable function.

Proof. It suffices to prove that πx is Borel measurable. Then, by Theorem
4.43 and Lemma 4.48 of [3], πx1...xk

is Borel measurable. If the point convergence of
a sequence of continuous operators {hm} to πx can be proved, πx is Borel measurable
by Corollary 4.25 and Lemma 4.30 of [3], where hm : D(K̃1, Y )→ Y , m = 1, 2, . . .,
0 < ‖x‖X = c < 1. To establish the sequence of continuous operators {hm}, the
result that Fn −→

n→∞
F in the Skorohod topology implies the point convergence of Fn

at the continuity points of F with the restriction to [0, 1]x is required. To prove the
result, suppose that {Fn} converges to F in the Skorohod topology and x0 ∈ [0, 1]x
is the continuity point of F with restriction to [0, 1]x. Then, there exists an n0 such
that d1(Fn, F ) < ε1 for any positive ε1 and n > n0. Thus, there exists a λn ∈ Λ1

such that ||λn − I||sup < ε1 and ||Fn − Fλn||sup < ε1. Since F is continuous at x0,
there exists a δ such that ||F (x∗)− F (x0)||Y < ε2 for ||x∗ − x0||X < δ, x∗ ∈ [0, 1]x,
and any given positive ε2. Then, for ε1 < δ,

‖Fn(x0)− F (x0)‖Y ≤ ||Fn − Fλn||sup + ‖F [λn(x0)]− F (x0)‖Y ≤ ε1 + ε2.

Next is to prove the point convergence of {hm} to πx. Let the Bochner integral
hm(F ) = m

∫
Em

F ∗du, where F ∗ : Em → Y is defined by F ∗(t) = F (tx/||x||X),

Em = {t : c ≤ t < c + 1/m, t ∈ R} is the interval of real numbers, and u is the
Lebesgue measure on the real line. Note that

∫
Em
||F ∗(t)||Y du(t) < ∞ (see [3],

Theorem 11.43) and hence F ∗ is Bochner integrable, i.e., hm being well-defined.
Note that the analogous result to the one in Lemma 5.1 also follows for the domain
[c, c+ 1/m)x, i.e.,

lim
∆→0

inf
{si}

max
i
w1 {F, [si−1, si)x} = 0,

where {si} is any ∆-sparse division for the interval [c, c + 1/m] of real numbers.
Therefore, there are only countably many discontinuities of F along the path [c, c+
1/m)x and hence only countably many discontinuities of F ∗ in Em. As Fn −→

n→∞
F

in the Skorohod topology, F ∗n(t) −→
n→∞

F ∗(t) for points t outside a Lebesgue measure
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5.2 Theorem 3.3

0 and there exist λn ∈ Λ1 and some positive integer N such that

||Fn||sup
≤ ||Fn − Fλn||sup + ||Fλn||sup
≤ d1(Fn, F ) + ||Fλn||sup + ε/2

≤ ||Fλn||sup + ε

= ||F ||sup + ε

for n > N and any ε > 0. Therefore, hm(Fn) −→
n→∞

hm(F ) by dominated convergence

theorem (see [3], Theorem 11.45) for Bochner integral. Therefore, hm is continuous
in the Skorohod topology by Theorem 21.3 of [12] and hence Borel measurable. By
the right continuity of F at x, ||hm(F )−πx(F )||Y −→

m→∞
0. Finally, π0 is continuous

in the Skorohod topology and hence Borel measurable owing to

‖π0(Fn)− π0(F )‖Y = ‖Fn(0)− F (0)‖Y ≤ d1(Fn, F ).

The proof for πx, ‖x‖X = 1, being continuous is analogous to the one for π0.

♦

5.2 Theorem 3.3

5.2.1 Lemmas used for proving Theorem 3.3

The following two lemmas are the counterparts of Lemma 4.1 and Lemma 4.2 in
the proof of Theorem 2.1.

Lemma 5.4. A set A in [D◦(K̃1, Y ), d◦1] is relatively compact if the following con-
ditions hold:
(i) The set Ai = {πxi(F ) : F ∈ A} is relatively compact for each xi ∈ K̃∗1c.
(ii)

lim
∆→0

sup
F∈A

w
′′

1 (F,∆) = 0.

On the other hand, if the set A is relatively compact, then condition (ii) holds.

Proof. The proof of sufficiency can be divided into two parts. The set A
being totally bounded in the sense of d∗1 is established in the first part which the set
A being relatively compact in the sense of d◦1 can be deduced from and established
in the second part.

Let the division 0 = tn0 < tn1 < · · · < tnkn = 1 with maxi(tni − tn(i−1)) ≤ 1/n

and n = 1, 2, . . .. In addition, let F̂∆(x) = F (xni) for x ∈ [tn(i−1), tni) and F̂∆(x) =

F (xq1) for x ∈ B∗(xq1,∆), where xni ∈ [tn(i−1)] and ({xni} ∪ {xq1}) ⊂ K̃∗1c. By
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5.2 Theorem 3.3

condition (ii), for given ε > 0, there exist ∆ and F̂∆ depending on F such that
w
′

1(F,∆) < ε, maxq w1[F,B∗(xq1,∆)] < ε and d∗1(F̂∆, F ) < ε for any F ∈ A. The

inequality d∗1(F̂∆, F ) < ε has been established in the proof of Theorem 3.2 given
in the supplementary material. Let S be the closure of the set (∪i{F (xni) : F ∈
A}) ∪ (∪q{F (xq1) : F ∈ A}). S is compact by condition (i). Thus, there exists a
finite ε-net H for S. Let N be the finite set of the operators that assume on each
[tn(i−1), tni) and B∗(xq1,∆) a constant value from H. Then, let F̂ ∗∆ in N defined

by F̂ ∗∆(x) = hni for x ∈ [tn(i−1), tni) and F̂ ∗∆(x) = hq1 for x ∈ B∗(xq1,∆), where
||hni − F (xni)||Y < ε and ||hq1 − F (xq1)||Y < ε. Thus,

d∗1(F̂ ∗∆, F )

≤
∣∣∣∣∣∣F̂ ∗∆ − F̂∆

∣∣∣∣∣∣
sup

+ d∗1(F̂∆, F )

< 2ε.

Therefore, N is a finite 2ε-net for A and A is totally bounded in the sense of d∗1.

Next is to prove that A is totally bounded in the sense of d◦1 and hence A
is relatively compact because of completeness of D◦(K̃1, Y ) (see [4], M5). The
inequality d◦1(F1, F2) ≤ 4∆ + supx∈K̃1

w
′

1 (F1,∆, x) given that 0 < ∆ ≤ 1/4 and

d∗1(F1, F2) < ∆2 has been established in the proof of Lemma 3.1 given in the
supplementary materials. Using this inequality, the following inequality

d◦1(F1, F2)

≤ 4∆ + sup
x∈K̃1

w
′

1 (F1,∆, x)

≤ 4∆ + w
′

1 (F1,∆) ,

can be established if 0 < ∆ ≤ 1/4 and d∗1(F1, F2) < ∆2. Furthermore, there exists
a ∆ < min(ε/8, 1/4) such that 4∆ +w

′

1 (F,∆) < ε for any positive ε and any F ∈ A
by condition (ii). Then, the ∆2-net in the sense of the metric d∗1 is a finite ε-net in
the sense of the metric d◦1 because for any F ∈ A there exists an operator F̂ ∗∆ in

the net satisfying d∗1(F, F̂ ∗∆) < ∆2 and hence d◦1(F, F̂ ∗∆) < ε. Therefore, A is totally
bounded in the sense of d◦1.

The proof of A being relative compact implying condition (ii) is given in
the following. By the property given in Definition 3.6, there exists a sequence
{∆n} such that both sequences {w′1(·,∆n)} and {maxq w1[·, B∗(xq1,∆n)]} defined

on D◦(K̃1, Y ) satisfying w
′

1(F,∆n) ↓ 0 and maxq w1[F,B∗(xq1,∆n)] ↓ 0 for ev-

ery F in D◦(K̃1, Y ). Further, w
′

1(·,∆) is upper semi-continuous for fixed ∆ while
maxq w1[·, B∗(xq1,∆)] is continuous for fixed ∆. Thus, by Dini’s theorem given in
M8 of [4], condition (ii) holds.

♦

Lemma 5.5. If the sequence of probability measures {Pn} on the metric space
[D◦(K̃1, Y ), d◦1] satisfies that {Pnπ−1

xi
} is relatively compact for each xi ∈ K̃∗1c, there

26



5.3 Theorem 3.4

exists a measurable set A such that Ai = {πxi
(F ) : F ∈ A} is relatively compact for

each xi ∈ K̃∗1c and Pn(A) ≥ 1− ε for every ε > 0.

Proof. The proof is analogous to the one of Lemma 4.2.

♦

5.2.2 Proof of Theorem 3.3

By replacing the function w with the function w
′′

1 , using Theorem 3.2 and by using
Lemma 5.4 and Lemma 5.5 in place of Lemma 4.1 and Lemma 4.2, respectively, the
proof is analogous to the one of Theorem 2.1.

5.3 Theorem 3.4

5.3.1 Lemma used for proving Theorem 3.4

Since [D◦(K̃1, Y ), d∗1] and [D◦(K̃1, Y ), d◦1] are separable, both [D◦(K̃1, Y ), d∗1] and
[D◦(K̃1, Y ), d◦1] are equivalent to the ball σ-fields generated by the open balls in the
two metric spaces. In the following, the counterpart of Lemma 4.3 for the Borel
σ-field [D◦(K̃1, Y ), d∗1] or [D◦(K̃1, Y ), d◦1] is given. Let K̃∗1 be a dense set of K̃1 and
contain the equivalence class [1].

Lemma 5.6. σ(πx : x ∈ K̃∗1 ) = D◦(K̃1, Y ) and {π−1
x1···xk

(Sk) : Sk ∈ Yk, x1, . . . , xk ∈
K̃∗1} is a separating class of D◦(K̃1, Y ), where πx1···xk

: D◦(K̃1, Y )→ Y k is the pro-
jection operator defined on D◦(K̃1, Y ) and where D◦(K̃1, Y ) and D◦(K̃1, Y ) are the
space and the Borel σ-field, respectively, either in the sense of the metric d∗1 or the
metric d◦1.

Proof. Since σ(πx : x ∈ K̃∗1 ) ⊂ [D◦(K̃1, Y ), d∗1], it suffices to prove that
[D◦(K̃1, Y ), d∗1] ⊂ σ(πx : x ∈ K̃∗1 ).

Let F̂∆, {xni}, and [tn(i−1), tni), be the operator and sets given in the proof of
Theorem 3.3. Let πK̃∆

be the projection random variable corresponding to the set

K̃∆ = ({xni} ∪ {xq1}), where ({xni} ∪ {xq1}) ⊂ K̃∗1 . Note that πK̃∆
is measurable

with respect to σ(πx : x ∈ K̃∗1 ) and YN , where N is the number of elements in K̃∆.
Let the random variable V∆ : Y N → D◦(K̃1, Y ) take value V∆(z) ∈ D◦(K̃1, Y ) and
the operator V∆(z) take constant values zni over the set [tn(i−1), tni) and zq1 over
B∗(xq1,∆), where zni and zq1 are the elements of z, the number of elements in the
set {zni} ∪ {zq1} is N , and z ∈ Y N . Then, V∆ is continuous because

d∗1 [V∆(zm),V∆(z)] ≤ ‖V∆(zm)− V∆(z)‖sup

and ||V∆(zm) − V∆(z)||sup −→
m→∞

0 as zm −→
m→∞

z. Thus, V∆πK̃∆
is measurable with
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5.3 Theorem 3.4

respect to σ(πx : x ∈ K̃∗1 ) and [D◦(K̃1, Y ), d∗1] and V∆πK̃∆
(F ) = F̂∆. Since

d∗1[V∆πK̃∆
(F ), F ]

= d∗1

(
F̂∆, F

)
≤ max

[
w
′′

1 (F,∆),∆
]
,

(see the proof of Theorem 3.2 given in the supplementary materials), there exists
a sequence {∆n} such that for any F ∈ D◦(K̃1, Y ), d∗1[V∆n

πK̃∆n
(F ), F ] −→

n→∞
0 as

∆n −→
n→∞

0. Further, because D◦(K̃1, Y ) is separable, the identity operator I(F ) =

F = limn→∞ V∆nπK̃∆n
(F ) is measurable with respect to σ(πx : x ∈ K̃∗1 ) and

[D◦(K̃1, Y ), d∗1] by Corollary 4.30 of [3]. Thus, [D◦(K̃1, Y ), d∗1] ⊂ σ(πx : x ∈ K̃∗1 ).
Moreover, [D◦(K̃1, Y ), d◦1] ⊂ σ(πx : x ∈ K̃∗1 ) because d◦1 and d∗1 are equivalent.

Since the class of finite-dimensional sets {π−1
x1···xk

(Sk) : Sk ∈ Yk, x1, . . . , xk ∈
K̃∗1} is a π-system and generates σ(πx : x ∈ K̃∗1 ), it is a separating class for
D◦(K̃1, Y ).

♦

5.3.2 Proof of Theorem 3.4

For any probability measure Q, let K̃∗1Q satisfy that πx on [D◦(K̃1, Y ), d∗1] or

[D◦(K̃1, Y ), d◦1] is continuous except the set of points of Q-measure 0 for each
x ∈ K̃∗1Q. Then, K̃∗1Q is the dense set of K̃1, contains the equivalence class [1],

and (K̃∗1Q)c ∩ K̃1 contains only countable equivalence classes [c]. The properties

of the set are proved as follows. Let J[c] = {F : F (x−) 6= F (x), x ∈ [c]} and
J[c],1/n = {F : ||F (x) − F (x−)||Y > 1/n, x ∈ [c]}, where 0 < c < 1. For ev-
ery fixed positive integers m and n, if there are infinitely many sets J[xmni],1/n for
which Q(J[xmni],1/n) ≥ 1/m, then Q(lim supi→∞ J[xmni],1/n) ≥ 1/m which con-
tradicts with the fact that at most finitely many equivalence classes [cni] sat-
isfy supx∈[cni] ||F (x−) − F (x)||Y ≥ 1/n by the equation lim∆→0 w

′

1 (F,∆) = 0,
i.e., only finitely many equivalence classes with ”jumps” exceeding or equal to
1/n. Therefore, there can be only finitely many equivalence classes [xmni] sat-
isfying Q(J[xmni],1/n) ≥ 1/m. Let K̃1Q = K̃1 ∩ (∪m ∪n ∪i[xmni])c and hence

Q(J[c]) = limn→∞Q(J[c],1/n) = 0 for c ∈ K̃1Q owing to J[c],1/n ↑ J[c], where
J[c],1/n ↑ J[c] is denoted as J[c],1 ⊂ J[c],1/2 ⊂ · · ·. πx is continuous as x ∈ [1]
owing to

‖πx(Fn)− πx(F )‖Y = ‖Fn(x)− F (x)‖Y ≤ d∗1(Fn, F ) ≤ d◦1(Fn, F ),

for x ∈ [1] and K̃1Q ⊂ K̃∗1Q, K̃∗1Q has the required properties.

Next, by the tightness of {Pn}, there exists a further subsequence {Pni(m)
} of
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every subsequence {Pni
} of {Pn} converging weakly to a probability measure Q,

i.e., Pni(m)
⇒ Q. Then, Pni(m)

π−1
x1...xk

⇒ Qπ−1
x1...xk

for all x1, . . . , xk ∈ K̃∗1Q by

the mapping theorem. Thus, let K̃∗∗1 = K̃∗1P ∩ K̃∗1Q. K̃∗∗1 is a dense set of K̃1

and contains the equivalence class [1] because (K̃∗∗1 )c ∩ K̃1 contains only countable
equivalence classes and both K̃∗1P and K̃∗1Q contain the equivalence class [1]. Then,

by weak convergence of the finite dimensional distributions of {Pn} to P in K̃∗∗1 ,
P = Q because Pπ−1

x1...xk
= Qπ−1

x1...xk
for x1, . . . , xk ∈ K̃∗∗1 and the class of finite-

dimensional sets {π−1
x1···xk

(Sk) : Sk ∈ Yk, x1, . . . , xk ∈ K̃∗∗1 } is a separating class by
Lemma 5.6. Finally, by Theorem 2.6 of [4], the result follows.
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