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ABSTRACT

A class of models involving mathematical equations for fitting the data is proposed.
The class of models consists of some commonly used statistical models, such as linear
regression models, nonparametric regression models, linear mixed-effects models, and
measurement error models. The equation of interest can be also a partial differential
equation. Nonlinear programming methods can be used to estimate the underlying
equation. Theoretical results for the methods of estimation are established. A sim-
ulation study and a modified example in thermodynamics are used to illustrate the
proposed models and associated methods of estimation.
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1. Introduction

Mathematical equations play a pivotal role in scientific research. Two classes of
mathematical equations, nonlinear equations and differential equations, are commonly
used. In the following examples, the data with means satisfying certain mathemati-
cal equations are analyzed and the corresponding statistical estimation problems are
discussed.

In standard nonparametric regression setting, the mapping between the means of
the covariates and responses is point to point. However, the means of the response
and covariate variables might satisfy a nonlinear equation such that the point to point
mapping is no longer true. A simple example of such nonlinear equations is the conic
equation. Let the data y;; = (Yij1, yij2)t, @ = 1,...,629, j = 1,...,n;, generated
from a bivariate normal distribution with mean vectors p,. = (fiy,,, fy, )" and identity
variance-covariance matrix I, where n; is the number of repeated observations at site
1 and equal to 1 in the example. The data are shown in Figure 1. The mean vectors
m,, satisfy the conic equation F(uyi) = 28/;12/“ + 28/@1_2 + 524y, fy;, — 162 = 0, where
F is a function defined on R?. Note that yij1 and y;;2 can be considered as the
observations corresponding to the covariate and response variables, respectively. The
fitted regression line along with the fits by other commonly used statistical methods,
including polynomial regression, kernel smoother, and smoothing spline, are shown
in Figure 1. Since the model assumption for these methods is fiy,, = f(jy;,), these
methods fail to discover the underlying equation, where f is a function defined on R.
On the other hand, the blue dots are the fitted values based on the proposed models
and associated method of estimation introduced in next section, which approximate the
true values (the blue solid line) generated by the underlying equation well. In addition
to the above equation, the pressure equation for helium at 273.15° K corresponding to
the equation of state for a gas in thermodynamics (see Britt and Luecke, 1973, Section
10) has the form

Cl'uzzlil'uym + CQ/Lyﬂ/‘zn + C3Hy;1 Hy;o + Cafly;q + C5lly;0 = 07

where fi,,, and fi,,, are the mean pressures of the (i — 1)th and the ith expansions
and ¢y, ...,c5 are some constants. The exact solutions of the equation (the blue solid
line) based on the results given in Table 4 of Britt and Luecke (1973) using complete
algorithm along with the data (the black points) generated by normal random variables
with means satisfying the equation and coefficients of variation equal to 10%, and
the fitted values (the blue dots) by the proposed models and associated method of
estimation are given in the left part of Figure 2. The fitted values approximate the
true values reasonably well. Furthermore, the encouraging results will be also obtained
in Section 4.2 as considering the pressure equation for methane at 131.93° K and both
the data with larger variations and the real data given in Blancett, Hall and Canfield
(1970) and Hoover (1965).
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Fig. 1. The data with the means satisfying the conic equation.
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Fig. 2. The pressure data for helium at 273.15°K: Observed data (black
e); Fitted values (blue dot); True equation (blue line).
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Partial differential equations (PDEs) are one of the intensively studied areas in
mathematics. Therefore, the other example is the wave equation, which is a partial
differential equation. The data y;; = (yij1,vij2)t, @ = 1,...,63, j = 1,...,n,, are
generated from a bivariate normal distribution with mean vectors p,, = (fiy,,, fhy;,)"
and variance-covariance matrix 0.22I, where n; is also equal to 1 in this example.
The data y;;(3) are generated from a normal distribution with means F (Hyir > Hyyy) and
variances equal to 0.22, and F(piy,, , fly.,) = 7-5¢08(ty;, — 24y,,) is the underlying wave
function, where k = 1,...,63. The upper left part of Figure 3 gives the wave function.
The mean vectors also satisfy the partial differential equation

O F (Hyy s by ) /O, = 40P F (11, fiyss) [ O1S, -

The plots in Figure 3 give the fitted functions based on the observed data y;;3) with
means equal to F'(iy,,, fly,,), one incorporating with the partial differential equation
and the other not. The proposed method of estimation incorporating with the partial
differential equation could provide a sensible fit for the data. On the other hand, the
fit without using the partial differential equation might not be sensible. In addition,
if the variance-covariance matrix of y;; is equal to 221, the variances of the data Yij(3)
displayed in the lower right part of Figure 3 are equal to 22, and the initial conditions
for the partial differential equation are known, the proposed method provides a very

accurate fit even for the data with larger deviations, as will be illustrated in Section
4.1.

The Wave Function Without Using Partial Differential Equation
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Fig. 3. The data with the means satisfying the wave equation.
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The problem of estimating the unknown function in the first example is related
to the one of estimating the parameters of nonlinear implicit functional models (see
Britt and Luecke, 1973) and the parameters involved in the known nonlinear implicit
functional relationship were of interest. The nonlinear implicit models could be em-
ployed to fit the data in chemical industry. However, relatively little has been done
for the estimation of the unknown nonlinear implicit functional relationship itself (i.e.,
nonparametric implicit functional models), which is one of the goals of this article. On
the other hand, the statistical inference related to the partial differential equations has
not attracted much attention. Cavalier (2011) related to the estimation of the function
given in the initial condition of the heat equation under the framework of statistical
inverse problems. Nevertheless, the range of applications of the partial differential
equations is enormous, for examples, astronomy, dynamics, elasticity, heat transfer,
electromagnetic theory, quantum mechanics, and so on. Since the observed data might
be subject to random errors, it might be reasonable to estimate either the solutions or
the PDEs based on the statistical modeling. Therefore, another goal of this article is to
model the PDEs of interest out of data and then estimate the corresponding solutions.
If the PDEs depend on some unknown parameters or functions, the goal is then to
estimate both these parameters or functions and the solutions. Above all, this article
is to propose two classes of statistical models, one defined by a nonlinear equation and
the other involving the PDEs, and to establish theoretical results for the methods of
estimation. It turns out that the algorithms for nonlinear programming problems can
be used to estimate the underlying equation. Nonlinear programming methods have
been widely used in statistics (see Thisted, 1988, Chapter 4). In next section, two
class of models incorporating the nonlinear equations and the differential equations
with random errors are proposed. The associated estimators based on the nonlinear
programming methods are also given in the section. The convergence results for the
proposed methods of estimation are presented in Section 3. In Section 4, a simulation
study is conducted to evaluate the proposed models and methods. Besides, a modified
example in thermodynamics is given in the section. A concluding discussion is given
in Section 5. Finally, some routine derivations used in Section 2.2, the proofs of the
theoretical results in Section 2 and Section 3, and additional applications, including
the models and methods of estimation for the correlated data, general constraints, sys-
tem of equations, equation selection, and convergence of algorithms characterized by
different maps, are delegated to the supplementary materials, which can be found at

|http://web.thu.edu.tw/wenwei/www/papers/jcsaSupplement.pdf/| .

Hereafter, the notation || - ||y is denoted as the norm of the normed space V. As V is
a Hilbert space, the norm induced by the inner product is || - ||y = (< -,- >y)"2. In
addition, the Euclidean norm is used for R?, where ¢ is a positive integer.
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2. Mathematical Equation Models

The statistical models involving the nonlinear functional relationship and the dif-
ferential equations have been explored in the literature, as indicated in the previous
section. Therefore, two classes of statistical models involving mathematical equations
for fitting the data given in the examples of Section 1 are proposed. The one involving
a nonlinear equation is referred to as ordinary equation models, while the other in-
volving a differential equation, possibly a partial differential equation, is referred to as
differential equation models. The two classes of models fall in a broad class of models,
referred to as mathematical equation models. Nevertheless, the general concept of the
mathematical equation models is the models involving two essential ingredients: one
is the operation or relation and the other is the statistical quantity related to the ob-
served data. Therefore, other statistical models involving different types of operations
or quantities of interest can be proposed, for some examples, the functions F' being the
solutions of integral equations or the parameters of interest being the variances of the
observed data. These models can be also included in the family of the mathematical
equation models.

2.1 Ordinary Equation Models

Intuitively, an ordinary equation model is a way of expressing the implicit relation

of the mean vectors of some random vectors. Further, the implicit relation is the
main interest. That is, given the random vectors Y = (Y3,...,Y),)" with mean vectors
= (u1,..., )" the unknown function F satisfying F(u) = 0 is of interest. A more
formal statement of the ordinary equation models is given below.
Definition 2.1. Let Vy be a collection of random vectors Y = (Y1,...,Y,)" with mean
vectors p = (p1,...,pp)t and My = {p: E(Y) =, Y € Vy} be a subset of M,
where M is a subset of RP. Let Vi be a subset of some normed space of real-valued
functions defined on M and V]?, the subset of Vi, be the set of functions I satisfying
F(p) =0, p € My, ie., V]? is the set of "null” functions with respect to My. An
ordinary equation model is denoted by (Vy, Vy, V})) provided that V]? is nonempty. If
there exists a unique function F' of which normed value equal to one and VJQ is the
nonempty subset of the space spanned by F, the model is referred to as the unique
ordinary equation model with respect to My and M.

The ordinary equation models include some commonly used statistical models, such
as linear regression models, nonparametric regression models, linear mixed-effects mod-
els, and measurement error models. In standard (conditional) linear and nonparamet-
ric regression models, F(p) = pp — o — P — -+ — Bp—1ptp—1 and F(u) = pp —
f(p, -, pp—1), respectively, where o, ..., S,—1 are the parameters, Y), is the response
variable, and Y7, ...,Y,_1 are degenerated random variables. In linear and nonparamet-



MATHEMATICAL EQUATION MODELS 503

ric measurement error models (or unconditional linear and nonparametric models), the
functions F' are equal to the ones in linear and nonparametric regression models but the

random variables Y7,...,Y,_; are not degenerated. In linear mixed-effects models, the
function associated with the ith observation is /(i) = pip—p1—Titpi2— - —Tip—2)lbp—1,
where i1, ..., % ) are the observed values of covariates.

The uniqueness of the ordinary equation models relies on the choices of V. For
a simple example, let My = {—1, 1} and V; be the vector space consisting of all
polynomials defined on M = R. Then, by the fundamental theorem of algebra, VJQ
consists of the polynomials of the form F(u) = c(u)(p — 1)%(p + 1)°, where a,b are
positive integers and ¢(y) is any polynomial function. Thus, (Vy, Vy, V]?) is not unique.
However, if V} is the vector space consisting of all polynomials with degrees less or
equal to 2, (Vy, V7, V})) is unique. In addition, the domain M also plays a crucial role
in determining the uniqueness of the ordinary equation models. In the above example,
it M = Moy, i.e., V} is the vector space consisting of all polynomials defined on My, then
(W, Vg, VJQ) is also unique since all polynomials of the form F(u) = c(p)(pn—1)*(pu+1)°
are equal.

In this article, consider that V; is a real Hilbert space with a norm || - ||y, induced
by the inner product on V. If F' is considered as the minimizer of a specified objective
functional, the following theorem indicates that the minimizer exists and falls in a finite
dimensional subspace of V.

Theorem 2.1. Let the objective functional be

1 ¢ 2 2
S(F) = m Z(< F, Ny, >Vf) +C||PHL(F)HVf7
i=1
where H is a finite dimensional subspace of Vi, ny,. € Vi are the representers associated
with py ..., 1, , the means of some random vectors, c is a positive constant, and
Py is a projection operator of Vi onto the orthogonal complement of H. Then, the
minimizer
F= argmin S(F),
FeV|[Fllvy=1

exists and has the form of Y], By, where 8} are the coefficients and vy are the basis
functions of some finite dimensional subspace of V.

Remark 2.1. In the above theorem, < F,ny, >v, related to F(p,,) provides the ”quan-
titative” information about the fidelity of the function F to the data if the value of F
evaluated at p,,, or its approzimation exists. On the other hand, the term || Py (F)H%/f
could be associated with the smoothness of the functions of interest, as in nonpara-
metric curve estimation using spline functions (see Berlinet and Thomas-Agnan, 2004,
Chapter 3). In addition, if the space H is the space spanned by Nuy, » this term can
rule out the “information” provided by the functions orthogonal to Ny, - Intuitively,
it means that only the “information” associated with the observations will be adopted.
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Therefore, ideally, the minimizer F of the objective functional S(F') results in both
small values of (< F,ny,, >v;)? and || Py (F)H|%/f, respectively, i.e., the fidelity of F
to the data reflected by the small value of (< F, uns >Vf)2 and accurate approxima-
tion by the function in the finite dimensional space H reflected by the small value of
HPHJ_(F)||2f = ||F — PH(F)H\%/f If H =V, ie., ”PHJ_(F)H‘%/} = 0, the minimizers
are any elements in the subspace of Vy orthogonal to the proper subspace of V¢ spanned
by Ny, -

If V¢ has a reproducing kernel defined on M x M (see Aronszajn, 1950; Berlinet
and Thomas-Agnan, 2004), then the pointwise value of F' at p exists and the results
given in Theorem 2.1 hold, as indicated by the following corollary.

Corollary 2.1. Let Vy be a Hilbert space with a reproducing kernel K(-,-) defined on
xXM. Then, as

1 m
S(F) = — > 2 hy,) +cll Py (P},
i=1

the results given in Theorem 2.1 hold.

If |F(p)| < cullFl[v; for all F'in Vy and all g in M, V; has a reproducing kernel
(see Aubin, 2000, Theorem 5.9.1), where ¢, > 0 depends on p. An example of V is the
completion of the tensor product of Paley-Wiener spaces (see Berlinet and Thomas-
Agnan, 2004, p. 31, p. 304).

By the above theorem and for the purpose of computations, assume that the under-
lying function F'(p) = >°7_, Biu(p), where F is either the minimizer given in Theorem
2.1 with H = Vy and < F\n,, >v,= F(p,,), or the function satisfying F'(u) = 0 for
n e My, ie., F € VfO , and where vy € V; are some known basis functions defined on
M. In the latter case, the coefficients 3] are referred to as the true coefficients. Thus,
the finite dimensional optimization methods can be employed to estimate F'. These
basis functions can be used to approximate or generate the functions in Vy. For exam-
ple, if V}; consists of all square-integrable functions, the orthogonal polynomials or the
tensor product of the orthogonal polynomials can be used as the basis functions. For
ease of exposition, let 1y be orthonormal and [[F||y, = 1. Thus, the coefficient vector
B* = (571, .. .,B;)t satisfies Z?Zl(ﬁl*)z = 1. Note that the imposed constraint mainly
depends on the choices of the basis functions and the norm of F. In addition, assume
that 1; are continuous functions defined on M.

Suppose that the independently observed data

yzg = (yijla"wyijp)t?i: 17"'7m7j: 17"'ani7

come from the distributions with mean vectors p,,, where m is the number of sites and
Yot ni = n. To estimate the function F, the vector 3(T;,) minimizing the mean sum
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of squares,
SB|Tn) = EZ —2.F T3 (yi)]
i=1 bj=1
m ng / 2
_ ZZ{ZBm V2 w(ym} ,
=1 j=1

subject to the constraint Zle 552 = 1 needs to be obtained, where

t
TTL = [Ttil(yl)’ e 7T§n1 (yl)v o 7T$n1(ym) Tirmm (ym)} )

B =B, 8)" yi = (W, yh,,)", and Tyj(y;) are sensible estimates of p,,, for
examples, the mean vectors T';(y;) = > 7 Y;;/ni or Tij(y;) = y,;. Both the trivial
solution B8 = 0 and the other functions with normed values not equal to 1 in VJQ can
be excluded by the constraint > 7 | 37 = 1. The objective function S(8 | T) can be
considered as the estimator of the following objective function for the underlying mean
vectors,

S* (B | 1) = Z F(u,,) = B [®" ()] T (1n,)B,

where ¥*(p, ) = [mfl/le(uyi)] is an m x ¢ matrix of which rows are

o o]

and where p, = (.. .,u;m)t.A

The search of the minimizer 3(T,,) can be considered as a nonlinear programming
problem with a constraint, i.e., the search for the minimizer of a given function and
a constraint imposed on the candidate solutions. To use the nonlinear programming
algorithms available for unconstrained problems, the original constrained problem needs
to be transformed into an unconstrained problem. The penalty function methods (see
Bazaraa and Shetty, 1979, Chapter 9; Nocedal and Wright, 1999, Chapter 17) are
commonly employed for the transformation. The penalty function multiplied by a
positive penalty parameter A can be added to the original objective function. Given
some regularity conditions, the solutions of the transformed unconstrained problem
could converge to the one of the original constrained problem as A tends to infinity.
The unconstrained objective function corresponding to S(3 | T',,) is

q 2
S\(BTn) = S(B|Tw)+ A (Zﬂ? - 1>

=1

m n;

- ZZ{Z@W Vg ) } +A<zﬂl—1) ,

i=1 j=1
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where (37, 512 —1)? is the penalty function (see Bazaraa and Shetty, 1979, pp. 332-
333). Note that other penalty functions can be also employed. The objective function
in matrix form is

SN (B | Tn) = B' [¥(T)) ®(T2)B+ A (68~ 1), (1)
where ¥ (T,) = {m_1/2n;1/21/1l [Ti;(y;)]} is an n x ¢ matrix of which rows are
{2 P [Ty om0 2, [Ty ()]

The minimizer of the objective function given in expression (1) is denoted as By (T'y).
Several theoretical results concerning the consistency and asymptotic normality of the
estimator 3, (T,) are given in next section. The objective function S\(8 | T') can be
considered as the estimator of the following objective function for the underlying mean
vectors,

Si(B | m,) = S*(B|p,) + (B8 —1)°
= B[O ()] W (1) B+ A (B8 - 1)°. (2)

The minimizers B*(uy) and Bf\(uy) of the objective functions S*(8 | u,) subject
to the constraint 3’3 = 1 and the objective function S3(B | m,) given in expression
(2), respectively, are equal to 3%, the vector of the true coefficients, provided that
Mo = {py, : i=1,...,m}, F(u) =0 for p € Mo, and the ordinary equation model
is unique. If there are multiple minimizers of the above constrained objective function
and F' € V]? , one of them is equal to the true coefficient vector for the ordinary equation
model.

2.2 Differential Equation Models

If the function of interest F' is a solution of a known differential equation or a dif-
ferential equation depending on some unknown parameters or functions, the associated
differential equation model is described below.

Definition 2.2. Let Vy be a collection of p x 1 random vectors Y with mean vectors p
and M ={p: E(Y)=p, Y € Vy} be an open subset of RP. A differential equation
model is a model with two ingredients: one is the set M and the other is an equation
mmwvolving the derivatives of an unknown real or complex function F on M . If p > 2,
the differential equation model is referred to as the partial differential equation model.

Let Vyy be a collection of p x 1 random vectors Y with mean vectors @ and
OM ={p: E(Y)=p,Y € Vygy} be a set of points corresponding to initial and
boundary conditions of the differential equations of interest. The issues of existence
and uniqueness of the solutions of the partial differential equations are not completely
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settled in mathematics. It is very crucial to prove the existence of the solutions of the
partial differential equations of interest. Several methods can be employed to prove
the existence of the solutions (see Jost, 2002). In addition, very few results existed for
imposing the boundary conditions to determine a unique solution in a general setting
(see Chester, 1970, Chapter 6-11). In this article, the equations with existed solutions
or a unique solution are of interest.

There are several criteria for classifying PDEs (see Jost, 2002, pp. 4-6). One of the
criteria is the order of the highest-occurring derivatives. For example, a second order
PDE with p =2 is

OF (p) OF(p) O°F(p) 9*F(u) 0*F(p) 9°F(p)

D 7F b b b ) bl ]
e E () Our ~ Opa op3 " Opidpg’ Opeduy’  Oud

=0,

where D is a real or complex function defined on the subset of M x K7, where K is the
scalar field, either the field of real numbers or the field of complex numbers. Hereafter,
consider that the field of real numbers is of interest. Suppose that the underlying
equation of interest is a dth order partial differential equation and the solution F' falls
in a real Hilbert space V;. Further, suppose that the underlying dth order partial
differential equation can be expressed as

OF (u ol F(p 0F(p
D aF(IJ’)a a( )7'-'aa aq (a)ara"'a 8(d)
p g - O, T
= [DF)] (1)
where D : Dom(D) — V; is an operator, o = (ov,...,0p), la| = Y1 jar < d, ag

are non-negative integers, {j1,...,j,} C {1,...,p}, and where Dom(D) is the domain
of the operator D. As indicated by Evans (1998, pp. 239-240), the great advantage of
interpreting PDE problem in the above form is that the general and elegant results of
functional analysis can be used to study the solvability of various equations involving
the operator D. Frequently, D(F) is linear. To be continuous, the norm used in the
domain of D(F') might be different from the one in V. For example, as considering the
functions with compact support in an open set of R, Dom(D) can be the completion
of the space of the functions infinitely differentiable with some inner product and Vy
can be the space of the square integrable functions with another inner product. The
following results analogous to Theorem 2.1 can be obtained based on the existence
theorem given in Ekeland and Témam (1999). The results can provide theoretical
support for the approximation of the solution of the PDE of interest by the function
falling in a finite dimensional subspace of V}, i.e., the function having a finite basis
function representation.

Theorem 2.2. Let fj,j =1,..., k1 and f},j =1,... ks, corresponding to the initial
conditions and boundary conditions, respectively, be the functions defined on subsets of
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RP which contain OM . Suppose that Vf*, the closed subspace of Vy, is non-empty and
Hy is a finite dimensional subspace of Vf. Let the objective functional defined on V]?‘
be

1
S(F) = ml;d?(F)+>\151(F)+/\252(F)+C||PHOL(F)\%/f,

where PHOL is a projection operator of VJZk onto the orthogonal complement of Hy,

k1 m2
Si(F) = Z {12 [fi(Boi)— < Fynsji >Vf]2}

m2

j=1 i=1
ko 1 m3 ) )
+Z {m3 Z [f5 (fgp)— < Fynaji >vy) } ;
j=1 i=1
1 mg )
Sa(F) = p— Z " Z Wijorn)— < Fymi >v;)" |
i=1 j=1

and where A1, 2 > 0 and ¢ > 0, y;jp41) are the observed values of some random
variables with means < F,ny >v,, di(F) = ao(py;)+ < Fymui >v,, ao is a real-
valued function defined on M, and where py; € M, fiy; € OM, and pis; € OM are the
means of some observable random vectors, m;, n2; are representers associated with py;,
n3ji are representers associated with [io;, N4j; are representers associated with fiz;, and

M1y N2> N3ji» Naji € Vf*. Then, the minimizer F = a1;g Iélin S(F) exists and falls in a
evy

finite dimensional subspace of VJ?‘.

Remark 2.2. Note that F in the above theorem can be the weak solutions falling in
the real Hilbert space and F might take values on some normed space rather than R
then. The weak solutions of several well-known PDEs subject to prescribed boundary
conditions fall in the Hilbert space, including the ones of second order elliptic PDFEs,
second order parabolic PDEs, second order hyperbolic PDEs, and Fuler-Lagrange equa-
tion (see Adams and Fournier, 2003, Chapter 1 and Chapter 3; Evans, 1998, Chap-
ter 6.2, Chapter 7.1, Chapter 7.2, and Chapter 8.2). Among these equations, the
Euler-Lagrange equation is not a linear PDE. Note that the weak derivative (see Aubin,
2000, Chapter 9), i.e., the derivative in the sense of distributions, might not exist in
the classical sense. However, those functions in Sobolev spaces with weak derivatives
can be accurately approzimated by smooth functions (see Adams and Fournier, 2003,
1.62; Meyers and Serrin, 1964). In addition, by Sobolev inequalities (see Adams and
Fournier, 2003, Chapter 4; Fvans, 1998, Chapter 5.6), that the equivalence class of
some weak solution contains an element belonging to the space of smooth functions
can be proved, i.e., the weak solution being imbedded into the space of functions hav-
ing derivatives in the classical sense. Therefore, as the pointwise values of F(uy;),
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[D(F)](p13), [Dj(F)](f2o;), and [Dj (F)](frs;) exist, it is natural to link these values with
the values of < F,ne >v,, ao(py;)+ < Fynui >v,, < Fingji >vy, and < Fingi >v;,
respectively, where D; and D} are operators corresponding to the initial conditions and
boundary conditions. To employ these pointwise values, it might be sensible to consider
the Hilbert space with a reproducing kernel and assume that the operator D depends on
some continuous linear operator Dy, e.qg. the one corresponding to a dth order linear
nonhomogeneous partial differential equation, and the operators D; and D;f are con-
tinuous linear operators. Thus, F(uy;) =< Fyn2 >v;, [Do(F)|(py;) =< Fymi >v;,
[D;i(F)|(f2;) =< F\m3ji >v;, and [Dj(F)|(fr3;) =< F,maji >v; and the results given in
the above theorem also hold, as indicated by the following corollary.

Corollary 2.2. Let D; : Dom(D;) — Vs, j = 1,...,k1, and D} : Dom(D;) —
Vi, j=1,...,ka, be continuous linear operators corresponding to the initial conditions
and boundary conditions, where Dom(D;) and Dom(D}) are closed subspaces of V.
Suppose that the underlying dth order partial differential equation can be expressed as

[D(F)] (1) = [Do(F)] () + ao(p) = 0,

where Dy : Dom(D) — V is a continuous linear operator, Dom(D) is a closed subspace
of Vi and ag € Vy. Let Vi = Dom(D)N [ﬂ?;lDom(Dj)} N [ﬁ?ilDom(D;)] and Vi be a
Hilbert space with a reproducing kernel K(-,-) defined on M x M, where M is a subset
of R, M C M, and OM C M. Let d;(F), S1(F), and So(F) in the objective functional
S(F) be

di(F) = [Do(F)}(11;) + ao(k1;),

Ky
Si(F) = Z { Z {fi(Ra;) — [D;(F)] (ﬂm’)}z}

]:
ko

Z{ Z{f fiss) — [D}(F)] mgn}?},

7j=1

and

= mil Z i Z Vijpen) — Flp)]”

Then, the minimizer F= argmin S(F) exists and falls in a finite dimensional subspace
FeVvy

of Vjé" . '

The explicit expressions of the solutions of the PDEs are very few and numerical
methods are commonly used (see Tveito and Winther, 1998). Therefore, consider
F(p) =>"{_, B¢i(p) and assume that these basis functions ¢ € V; are smooth. Note

that F' is usually an approximation of the solution of the PDE of interest. Thus, some
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errors might occur and an error analysis is given in Section 3.2. Since the normed
values of the solutions of the partial differential equations might not be equal to one
and the solutions are usually subject to some additional conditions, the constraint
S (B )2 =1 can be taken away. Further, for ease of exposition, consider p = 2 and
the second order linear nonhomogeneous partial differential equations, i.e.,

D [ Fm)] = ao(i) + alu) O 30) = 0, ®)
where ag(p) and a(p) = [ai(p),...,as(p)] are constant or non-constant functions
defined on M and

FO [f(u) Of () of(w) Pf(w) *f(w) *f(w)]'
" O T Ope T Op? T Ouidps’ Oud ’

and where f is any twice differentiable function with continuous second and mixed
second derivatives defined on M. For examples, the Poisson’s equation based on the
Laplace operator V2 = 92/0u? + 0%/0u3 is V2F () — g(p) = 0, the heat equation is
cO?F(p)/0u? = OF (u)/0p2, and the wave equation is c20%F (u)/0p2 = 0*F(u)/ou3,
where g is a real-valued function defined on M and c is a positive constant. The differ-
ential equations of interest depend on both the vectors pu and 8" since OF (p)/0p;, =
Sl By Ovi(p)/Opjy and O*F () /Ops0us, = Y[, Bf 0%¢u(p)/Os, Oy, where ji €
{1,2}, and j2 € {1,2}. Let

So(B [ Th) EZ EZdQ(ﬁsz‘j) ,
i=1 v =1
where
d(B|Ty) = D {Tz-j<yi>,F<2> T3y}

= a0 [T35(y)) +Zﬁl{ Ty i [Tij(w)]}

The unconstrained objective function corresponding to the partial differential equations
given in expression (3) is

S(IB ‘ Tn;TTL) = St(/6 ’ Tn) + SO(B ‘ Tn)7 = 1727 (4)

where S;(b | T',) is the mean sum of squares corresponding to the initial conditions (IC)
and boundary conditions (BC) or to Yij(p+1), the values of Yi;,41), and where Yij(,11)
are the random variables with means F'(p,,) and T,, are the estimates corresponding
to the parameters in M. For a simple example, suppose that the initial conditions
for the one-dimensional wave function with M = (0,1) x (0, L) are F'(111,0) = f1(u1,0)
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and OF (u1,0)/0p2 = fa(p1,0), where L is a positive constant and f; and fy are given
functions mainly depending on pp. In this case,

S1(B|T,) = %Z ! i{{ [le(yz)} - F [Tz](yz)}}2
i=1 =
~ oF [Tij(yi)] i
+ 9 fa [Tij(yi)} T

where T;;(y;) are sensible estimates of fuy; = (tiy;,,0)" and

~ ~t ~t ~t ~t t
To= [T Lo ) Do)y T, ()]

In practice, the differences between f1[T;(y;)] and F[T;;(y;)] and the ones between
falTij(y;)] and OF[T;;(y;)]/Opz might be significant. Therefore, Si(8 | T,) rather
than \S1(8 | T,) with large values of A as given in the previous section is employed.
However, AS1(8 | Tn) with large values of X is still a sensible alternative provided
that Tij (y;) are accurate estimates of fi,,. If the boundary conditions for the one-
dimensional wave function are required and are F'(0,pu2) = 0 and F(1,u2) = 0, the
analogue mean sum of squares can be obtained and added to the objective function.
On the other hand, the mean sum of squares based on y;;(,+1) is

S2(B | T) = Z Z{ywﬂ F[Tyy)]} b (6)

where T, = T',,. The objective function S(3 | Ty, Ty) given in expression (4) can be
considered as the estimator of the following objective function,

S*(B | 1y, iry) = S:(B | 1) + Zd"‘muyz (7)

where 1, = (uyl, cees ﬂzm)t are the parameters corresponding to the initial and bound-
ary conditions as t = 1 or i, = p, as t = 2, S(B | p,) is the function of B3
by replacing T';; in the function Sy(B3 | T') with their counterparts fi,., and where
d(B | py,) = Dlpty,, F(py,)). )

The objective function given in expression (4) incorporating with Sy(3 | T',) has
the form

S(B|Ty) = B Ao(Tn)B + [vo(Tn)]' B+ co(T), (8)

where ¢o(T),) is a scalar, vo(T},) is a ¢ x 1 vector, and Ag(T),) is a ¢ X ¢ matrix. On
the other hand, if S;(8 | T',) is a second-order polynomial function in 3, the objective
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function given in expression (4) incorporating with S;(8 | T}) is analogous to the one
incorporating with Sy(8 | T), i.e.,

S(8 | T ) = B' Ao(To T0)B + [00(T T)]|| B+ o, 7). (9)

The expressions for ¢y, vg, and Ag along with the ones corresponding to the objective
function incorporating with S1(3 | Tn) for the wave function example are given in the
supplementary materials. If the matrix Ag is positive definite, the minimizers of the
objective functions S(8 | Ty) and S(8 | T, T,) given in expressions (8) and (9) are
B =(—1/2)A;  vo.

The objective functions S(8 | T,,) and S(8 | Ty, T,) given in expressions (8) and
(9) can be considered as the estimators of the objective functions

S* (8| ) = B A (1,)B + [vi(p,)] B+ chlm,),

and

S* (B | py, n,) = B A1y f1,)8 + [05 (1t i1,)]" B+ ¢k, i),

respectively, where Ag,v{;, and ¢ can be obtained by replacing T;; and Tij in the
functions Ao, vo, and ¢y with their counterparts p,, and f,,, respectively.

The above approaches can be extended to higher order linear partial differential
equations or nonlinear partial differential equations. For nonlinear differential equa-
tions, the explicit form of 3 might not be available, but the nonlinear programming
methods can be employed to find the minimizers. If the coefficient functions a; or the
functions involved in the initial and boundary conditions are unknown (see Cavalier,
2011, p. 20) and fall in some normed spaces, these functions could be expressed or
approximated as a finite basis representation or considered as parameters. In the wave
function example, ¢ can be considered as a parameter and the unknown functions f;
and fa could be expressed or approximated as fi(f) = Y i1, B, Wri(p) and fo(pr) =
2 B}Qwazl(ﬁ), where 1¢,; and 1f,; are some basis functions. Thus, the associated
objective function is S(3, 3 #1118y, € ] Tn,Tn) and the nonlinear programming meth-
ods can be employed to find the minimizers, where B, = (81, .- - Brag)t and By, =
(Bfy1s- - Brags)' are vectors of coefficients corresponding to B = (,6’;211, .. ,5;?1111)75
and 8%, = (83,1, - - ,B}QqQ)t, respectively.

If Y is degenerated and both the values of p,, and Yj;,41) are available, the ob-
jective function with large values of A,

m

So(8 g+ | S (B )+ 518 )| (10)

i=1

depending on the observations y;;(,+1), can be used to find the minimizers.
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3. Asymptotic Aspects of Methods of Estimation
3.1 Nonlinear Programming Methods and Their Convergence

To find the minimizers of the objective functions given in expressions (1) and (4), the
algorithms for the nonlinear programming problems can be employed. There are several
techniques for the unconstrained optimization problems (see Bazaraa and Shetty, 1979;
Nocedal and Wright, 1999; Rheinboldt, 1998). Basically, these methods can be classified
according to the use of the derivatives of the objective function. The Fibonacci search
procedure (see Kiefer, 1953), the method of Rosenbrock using line search (see Bazaraa
and Shetty, 1979, Chapter 8.4; Rosenbrock, 1960), and the Nelder-Mead algorithm
(Nelder and Mead, 1965) are derivative-free methods. Intuitively, the search direction
and the distance along the direction are main quantities of several derivative-free algo-
rithms. For example, as the objective function of several variables is S\(8 | T'), the
method of Rosenbrock first determines a set of linearly independent orthogonal search
directions {l; : j = 1,...,q} based on Gram-Schmidt procedure and then finds the
minimizer §; of the function S,\(Bk,u + sl; | T'y,), where kal,jﬂ = ,Bk,u + 3515 is
the estimated coefficient at the kth iteration with respect to the search direction I;
and ,@071 is equal to the initial estimated coefficient. The new estimate at the (k+ 1)th
iteration is 3 k1= Bk,l,q—l—éqlq. The procedure stops as the distance of the current iter-
ated point By, ; and the previous iterated point Bj_; ; is smaller than the pre-specified
termination scalar. On the other hand, the method of Newton, the methods using con-
jugate directions (see Bazaraa and Shetty, 1979, Chapter 8.6) which include the method
of Davidon-Fletcher-Powell and its generalizations (see Broyden, 1967; Broyden, 1970;
Davidon, 1959; Fletcher and Powell, 1963; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970), and the conjugate gradient method proposed by Fletcher and Reeves (1964)
are the methods using derivatives. Since the direction of movement in the method of
Davidon-Fletcher-Powell depends on the product of a positive definite matrix approx-
imating the inverse of the Hessian matrix and the gradient vector, the method is also
a quasi-Newton method.

In standard nonlinear programming problems, the objective functions involve some
variables and known coefficients. For example, as the objective function is the Rosen-
brock function, the nonlinear programming problem is

min_100(82 — 81)2 + (1 — B1)%,
B1,82€
where 81 and 32 are variables (parameters in statistics) and the constants such as 100
and 1 are known coefficients. On the other hand, the objective functions for the math-
ematical equation models involve the non-random variables (parameters) f1,..., fq,
random coefficients corresponding to the random vectors Y, and known coefficients.
Intuitively, it is similar to replace the constant coefficient 100 in the above function by
a random variable Y with E(Y) = p,, = 100 and then to obtain the minimizer based
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on the data generated from the random variable Y.

Convergence of the nonlinear programming algorithms is crucial. The convergence
results for many iterative methods in the standard nonlinear programming problems
have been well established (see Bazaraa and Shetty, 1979, Part 3). However, relatively
little for the nonlinear programming problems involving the random coefficients, espe-
cially corresponding to the data in statistics, has been done. Therefore, developing con-
vergence results by taking the randomness of some coefficients into account is required.
The results concerning both the convergence of the estimators and the convergence of
the optimization algorithms are established in this section. The first four theorems
and associated corollary concern the convergence of the estimators and the sufficient
and necessary conditions for the existence of the optimal estimators, while the last two
theorems concern the convergence of the iterative sequence of estimators generated by
the algorithms to the coefficients of interest. In a nutshell, the first two theorems con-
cern the convergence of the minimizers based on the unconstrained objective functions
Sy to the vector of coefficients 3%, i.e., the consistency and asymptotical normality
(weak convergence) of the estimated coefficients and associated estimator based on the
objective function S used in the ordinary equation models. The third and fourth the-
orems are the random versions of well-known Karush-Kuhn-Tucker (KKT) conditions
(Karush, 1939; Kuhn and Tucker, 1951). To search for the minimizer of the uncon-
strained objective function of interest, such as Sy, the nonlinear programming methods
involve generating a sequence of vectors iteratively. The convergence of the algorithms
(the iterative process) to the vector of coefficients 8" is crucial for the successes of the
nonlinear programming methods. Therefore, the last two theorems concern the conver-
gence of commonly used algorithms used in the mathematical equation models, such
as the Newton’s method. Assume that M = RP in this sub-section.

The consistency of the statistics T';; with the mean vectors p,, is crucial for the
convergence of the nonlinear programming methods. In the following theorem, the
convergence of a subsequence of minimizers {[A(Tn) cA=12...,n;=1,2,..., 0=
1,...,m} to the coefficient vector 3" is established. Let

t
Tnj = Til(yl)ﬂ T 7T§n1j (y1); to 7T£n1(ym)7 T 7Tfnnmj (ym) )

where {Tip,; : j =1,2,...} is the subsequence of the sequence {T'i,, : n; = 1,2,...}
for every i. Denote the notation 2, as the convergence in probability. Note that the
notations p,, u, i1, w € R™ and p, i, p,,, € RP are used in the following.

The existence of the minimizer 3,(T,,) in Theorem 3.1 can be guaranteed by the
following lemma.
Lemma 3.1. 3)(u), the minimizer of SY(B | u), exists for any w € R™ and any
A > 0.

Note that there might exist multiple minimizers of Sx(8 | T'). In such case, 3, (T%,)
is equal to one of these minimizers.
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Theorem 3.1. There exists a subsequence {BAj (Ty;) : j=1,2,...} of the sequence
of random vectors

{B,\(Tn): A=1,2,..., m =12, .., zzlm}

converging to 3° in probability as j — oo, i.e.,
B)\j (Tny) L /8*7
J—00
if the following conditions hold:
(i) There exists a neighborhood of p,, such that S3(B | w) has a unique minimizer ﬂ;(u)
for w in the neighborhood and for large X, i.e., S3(B | w) having a unique minimizer
provided that X\ is greater than some positive integer.
(i)
Tij(y;) = Ti(y,) My,

n; —00

for every 1.

Note that the measurability of 3 \(T},) is assumed implicitly in the above theorem.
If B \(T',) is not measurable, the outer probability measures could be employed to prove
the convergence in probability in such case. As the Vj-valued estimator (see Da Prato
and Zabczyk, 1992, Chapter 1) F,\j =>1, ijl(Tnj)W(M) is of interest, the following
result concerning the consistency of the estimator can be obtained by employing the
above theorem, where B)\j (T;) = [Br1(Tny)s- - - Bryq (T
Corollary 3.1. Let Fy, = 31, fy,1(Tn, )¥1(p) and 4y € Vy. Then,

IFy, = Fllv, == 0
j—00

if the conditions given in Theorem 5.1 hold.

As Ti(y;) = Z;“:l Yii/Mis Yijk,J = 1,..., are iid. fori=1,....mk=1,...,p,
and E|y;1x| < oo, the condition for the consistency of the statistics T';(y;) in Theorem
3.1 and Corollary 3.1 holds by the weak law of large numbers.

The following theorem concerns asymptotic normality of the Vy-valued estimator
based on the estimated coefficients. For simplification, let T';;(y;) = Ti(y;), ni = N,
i = 1,...,m, ie., equal number of repeated observations at each site, and T =
[T (y,),-.., Tt (y,,)]" be an mp x 1 vector. The objective function S\(8 | T,,) given
in expression (1) depending on T, i.e.,

S\(B | Th) = B [¥*(T)' O (T5)B + A (B8 —1)°,

is also denoted as S\(8 | T"y) and hence the corresponding minimizer, a g-dimensional
random vector, is denoted as

BATN) = |Bu(TN), .- ,qu(T*N)]t.
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Furthermore, Sy(3 | ) = S5(8 | u) at any w € R™ in such case and hence 3,(u) =
,Bi(u), where Sy(8 | u) and B, (u) are the function and minimizer by replacing T%
with w in Sy(8 | T ) and B, (T), respectively. The following lemma indicates that
the minimizer 3, (u) exists.
Lemma 3.2. B,\(u), the minimizer of Sx(B | u), exists for any uw € R™ and any
A > 0 if the following condition holds:
(i)Ti;(y;) =Ti(y;),and n; =N, i=1,...,m.

The above lemma implies that there exists a function defined on R™ taking value
By (u) at w. If the minimizers B, (u) at w are not unique, the function takes one of
the values. For succinctness, the function is also denoted as BA(u) The asymptotic
normality of the Vy-valued estimator F\ = > B (T )1 () can be established based
on the above lemma, the mapping theorem (see Billingsley, 1999, Theorem 2.7) and the
result for functions of asymptotically normal vectors (see Serfling, 1980, Chapter 3.3).
For a Vj-valued Radon Gaussian variable g (see Ledoux and Talagrand, 1991, Chapter
3), let

S(9) = sup  {E{[L(9)*}}'/%
LIy <LLevy

where Vf* is the topological dual space of V.

Theorem 3.2. Let I\ = ?:1 BAZ(T*N)W(M)z where ¢ € Vi, {Fn = \/N(FA —
F): N =1,2,...} converges in distribution to a Vy-valued centered Radon Gaussian
random variable F with

S(F)= sup  {[(L)]'DED'v(L)}"?

IEllv; <LLEV;

and v(L) = [L(1), ..., LYy}, i-e., Var[L(F)] = [v(L)]!DED"v(L), if the following
conditions hold:

(i) The condition given in Lemma 3.2 holds.

(ii) Every element of By (u) has a nonzero differential at , and the associated matriz
D is a g xmp matriz with the (1, j)th element equal to the first derivative of the function
Bri(w) with respect to the jth element of u at My

(iii) {VN(T% — my,) : N = 1,2,...} converges in distribution to the multivariate
normal random variable with zero mean vector and variance-covariance matrix 3.

(iv) Vy is separable.

As Ti(y;) = Z;VZI y;;/N and (yi;,-. ., Yn;)5 = 1,..., are iid. with a variance-
covariance matrix, condition (iii) for the asymptotical normality of the statistics T
in the above theorem holds by the central limit theorem in R™?. Note that the only
required condition imposed on t; in Theorem 3.2 is 1, € V, i.e., the continuity as-
sumption imposed on ; being not necessary.

The following two theorems provide the sufficient and necessary optimality con-
ditions for the ordinary equation models. These conditions can be considered as the
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random versions of the well-known Karush-Kuhn-Tucker (KKT) conditions (Karush,
1939; Kuhn and Tucker, 1951).

Theorem 3.3. There exists a subsequence {BAj (Ty;) : j=1,2,...} of the sequence
of random vectors

{BA(TH): A=1,2,..., n;=1,2,..., izl,...,m}

such that

and
[ (T,,)]" ©(T,)B), (Tn,) - 0,

if the conditions given in Theorem 5.1 hold.

The sufficient conditions for the ordinary equation models can be established, as
indicated by the following theorem.
Theorem 3.4. B(p,y) = B* if the following conditions hold:
(i) There exists a sequence of estimators {B(Ty) : n;, = 1,2,..., i = 1,...,m} such
that

and

where B(uy) 18 the unit vector.

(i)

Tij(y;) = Ti(y;) m%go Iy,
for every 1.

As F € V9, the following theorem indicates that the subsequence of the sequence of
minimizers of the objective function given in expression (1) generated by the Newton’s
method converges to the true coefficient vector 8*. Let {B)\k(Tn) ck=1,2,..., n; =
1,2,...,¢=1,...,m} and {B;k(uy) : k=1,2,...} be the sequences of minimizers
of the objective functions given in expressions (1) and (2) generated by the Newton’s
method at the kth iteration, respectively.

Theorem 3.5. Assume that [Hg(B,u)]™! ezists for any 3 € R? and any u € R,
where Hp(B,u) = 9*S5(8 | u)/0B0B" is the Hessian matriz. There erists a subse-
quence {,[A‘}ng (Ty,): j=1,2,...} of the sequence of random vectors {B)\k(Tn) D k=
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1,2,..., n;=1,2,..., i =1,...,m} converging to either 3% or B;(/l,y) in probability
as j — oo if the following conditions hold:

(i) For each B contained in a compact subset C1 of the set {8 : ||B — B"||re <
1851 (18,) — B, (1813 — 1)(I18° ~ Bll s — 1) > 0, the corresponding Hessian matria
of the objective function SX(B | p,) given in erpression (2), i.e., 9%S5(B | uy)/ﬁ,B@Bt,
s positive definite and

_ « t ok
o0 { 4N (@7 (1)) @7 (1) + 88"} > 1Bl
where o4(A) is the smallest singular value of a g X q¢ matriz A.
(i) By (1) € C1 for every k.
(iii)
B)\,l(Tn) n o B)\,l(“y)'

1yerey N —0OQ

(iv)
Tij(y;) = Ti(y,) ni%go My,

for every i

If the linear nonhomogeneous differential equations are of interest and the initial
and boundary conditions are linear in 3, e.g. the illustrative example given in Section
2.2, the following theorem indicates that the subsequence of minimizers of the objec-
tive function given in expression (4) generated by the Newton’s method converges to
B (1, f1,), which is the minimizer of the objective function given in expression (7). Let
(Be(Tn,Tw) :k=1,2,...,n;=1,2,...,i=1,...,m} and {By(p,. B,) : k=1,2,...}
be the sequences of minimizers of the objective functions given in expressions (4)
and (7) generated by the Newton’s method, respectively. Note that B, (Tn,T))
and BZ(uy, [l,y) independent of A are the kth iterated vectors generated by the New-

, ~ ~t ~t ~t ~t t
ton’s method. Let Tnj = |:Tll(y1)7 T 7Tln1j (y1)7 T 7Tml (ym)7 e 7Tmnmj (ym):| ’
where {Tm” : j=1,2,...} is the subsequence of the sequence {TW cn;=1,2,...}

for every i.
Theorem 3.6. There exists a subsequence {Bk] (T, Tr;) : j=1,2,...} of the se-
quence of random vectors {Bk(Tn,Tn) ck=12..., ny=12...,i=1,...,m}

converging to B*(uy, ﬂy) in probability as j — oo if the following conditions hold:

(i) S8 |ty fty) = B A3ty )8+ [0 (11y )8 + 1y, i), where Aj(u, @) is
nonsingular for any w,u € R™P, is positive definite at (uy,;ly) and its elements are
continuous at (f,, ft,), the elements of v are continuous at (f,, ft,), and c is a real-
valued function.

(i)
Bl(TnaTn) L) Ei(“y?ﬂy)

T 5eeeyTm, —> 00
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(iii) For every i,

Tij(y;) = Ti(y;) o Moy,

n;—00

and

Tij(yi) = Ti(yi) — ﬂ’yi‘

Nn;—r00

3.2 Error Analysis and Choices of Numbers of Basis Functions

If the orthogonal polynomials such as Chebyshev polynomials or Hermite polyno-
mials are used for the ordinary equation models, it is suggested that a large number
of basis functions should be avoided owing to the computational inefficiency and great
complexity of the estimated equations. Theoretically, the choice of the basis function
for the ordinary equation models mainly depends on the space which F' might fall in
(see Kreyszig, 1978, Chapter 3.7). For example, if y; € (—o00, 00), Hermite polynomials
might be a good choice. On the other hand, the choices of the basis functions and the
number of basis functions for the differential equation models mainly depend on the
PDEs of interest. The solutions of some PDEs such as the heat and wave equations
subject to the specific initial conditions and boundary conditions can be expressed as
infinite Fourier series and trigonometric functions can be used as the basis functions.
In such cases, an error analysis might be required in order to develop some criteria to
choose a sensible value of ¢, the number of the basis functions. Suppose that V; is a
separable Hilbert space. Then, the true function can be expressed as F' = Y2 vy,
where 1; are orthonormal basis functions. Let F= Zle Blwl be the estimator based
on the finite basis representation. If ng = Var(Bl) exist, the mean integrated squared

~ 2
F—FH >

Vi

) 2 )
= E(HF—EﬁHVf> +[Ex = Flly,

= > ol + Z [E(Bl) —5;]2 + )68

l=q+1

risk is

N
I
—_
-
I
L

where Ep = Y1 | E (Bl)wl. The risk depends on the variance (the propagated noise
error) reflected by the first term and the bias (the approximation error) reflected by
the last two terms. The variance term can measure the stability of the estimator, while
the bias term can measure how well the finite basis representation approximates the
true function in the average sense (see Cavalier, 2011, p. 34, p. 37). As ¢ tends to
infinity, the last term »_;° q e )2 tends to zero. However, as ¢ increases, the number
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of summands in the first term increases and the value of this term might possibly
increase. Moreover, the computational burden is heavy for obtaining the estimator
based on the large number of basis functions. Intuitively, the sensible choice of ¢ is
a trade-off between the first term and the sum of the last two terms, |[E; — F||%/f,
i.e., the trade-off between the variance and bias. For illustrations, consider the wave
equation O2F (1, pu2)/0us = c2O?F(u1, u2)/0p3, 0 < p1 < 1, 0 < pg < 2T, with the
boundary conditions F(0,pu2) = F(1,u2) = 0 and the initial conditions F'(u1,0) =
fi1(u1,0), OF(p1,0)/0pe = fa(p1,0), where T is a positive integer and f1, fo are real
functions. The solution is

F(ui,p2) = iQsin(nwul) { [/01 fl(ul,O)sin(nﬂul)dul] cos(cenmpig)

n=1

cn

T { /0 i, o>sm<mu1>dm} sz’n(cmm)} '

As ¢ =1, fi(p1,0) = > 00 apsin(nmpy), and fo(p1,0) = > 02 nabysin(nmp ), the
solution can be expressed as

o0 o0
F(ui,pe2) = Z apsin(nmui)cos(nmug) + Z bpsin(nmuy)sin(nmus)
n=1 n=1
(see Tveito and Winther, 1998, Chapter 5), where a,, b, € R are some constants such
that Y > a2 < oo and Y o2, n?b?2 < co. Suppose that V; is the Hilbert space with
the inner product given by

2T 1
<k, F >Vf=/ / Fi(pa, p2) Fa(p, po)dpndps
0 0
and the orthonormal basis functions

{(T/2)" 2sin(nmps)cos(nmpg) - n=1,...}
U {(T/2)"Y?sin(nmp)sin(nrps) : n=1,...}
U {2112y,

Then, 85, ) = an, 53, = by, and the last bias term Y>;° \ (5})? 2% 0 since S0 (a2 +
b2) < oo.

It might be reasonable to assume that an “optimal” value of ¢ should result in
the smallest value of the mean integrated square risk. Thus, the unbiased or nearly
unbiased estimators of the mean integrated squared risk or its corresponding empirical
risks can be used as selection criteria. For example, analogous to the one employed in
nonparametric regression setting, one estimator of the empirical risk

lra -1, [Fo-1]' [ - 1]

n n

9
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2
S2(B|Ty) Hy(P“) - f(Q)‘ e Y — F (@ Y1) — F(@)]
olq) ¢(q) a ¢(q) ’

where ¢(q) is the penalty function of ¢,

F=[F(y)s e Flhg,) oo Flpy, ) iy,

~ ~ ~ ~ t
f(q) = (FH,...,Flnl,...,le,..‘,anm> s

1/2nf1/2yij(p+1) and where

Y(p+1) s an n x 1 vector with the /th elements equal to m™ ;

~

Fij = m*1/2n;1/2 .y By [Ti;(y;)] and | = 22;11 ng + j. The choice of the penalty
function ¢ might be different from the one in nonparametric regression setting since
f(q) might not be linear in term of Ypr1)- I f(q) can be approximated by H(D)Y(p+1)s
several choices of ¢ based on Tr[H(q)]/n could be employed (see Eubank, 1988, pp.
38-40), where H(q) is an n X n matrix function of ¢ and Tr[H(q)] is the trace of the
matrix #(q). This approach is analogous to the one used for statistical model selection
problems. Note that the estimators of the empirical risks involve the information
provided by the derivatives could be also used for the choices of the numbers of basis
functions, for example, S(ﬁ | T, Th)/(q).

4. Numerical lllustrations

4.1 Simulations

The Nelder-Mead algorithm, the Newton’s method, the quasi-Newton methods, and
the conjugate gradient methods are commonly used nonlinear programming methods.
Therefore, in the first simulation study, several methods, including the Nelder-Mead
algorithm, the Newton’s method, the BEFGS method (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970), and the conjugate gradient (CG) method proposed
by Fletcher and Reeves (1964), were employed for illustrations. Note that the BFGS
method is a quasi-Newton method (see Nocedal and Wright, 1999, Chapter 8). A
large value of the penalty parameter was pre-specified. Further, T;(y,;) = Ti(y;) =
23‘11 Yij/ i

In the first simulation study, the conic equation in Section 1 was used. The observed
data were generated by

yijlzﬂyﬂ"‘@‘jl’ yij2:/~1'y7;2+€ij27 izla"'vla j:17-~-7ni:=]7

where

V6 9v2 V6 9v2
Py = 75211(31-) - Tcos(si), Pyso = ——Sin(s;) + Tcos(si),
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Table 1. Relative errors for the conic equation model.

J=1lc=02| o=1| =2
Nelder-Mead | 0.02674 | 0.08226 | 0.25016
CG{0.01259]0.02906 | 0.08748

BFGS [0.05865 | 0.33665 | 0.38301
Newton | 0.05866 | 0.33666 | 0.38301
J=10|c=02] o=1| o=2
Nelder-Mead | 0.02577 | 0.02972 | 0.04977
CG{0.01214]0.01381 [ 0.01854
BFGS|0.01401|0.11757|0.25144
Newton [ 0.01394|0.11762 | 0.25150
J=30lc=02| o=1| o=2
Nelder-Mead | 0.02391 | 0.02768 | 0.03485
CG|0.01225]0.01291 | 0.01465

BFGS [0.01064 | 0.05959 | 0.13804
Newton | 0.01056 | 0.05956 | 0.13819

and where €;;1) and €;j2 were independent normal random errors with zero means and
standard deviations ¢ equal to 0.2, 1, and 2, and s; were the spacing with three settings:
s; = 0.01% corresponding to I = 629, J =1, s; = 0.1¢ corresponding to I = 63,J = 10,
and s; = 0.2¢ corresponding to I = 32, J = 30. These settings corresponded to different
numbers of the repeated observations at each site. The data discussed in Section 1
were generated by the first setting. 1000 replicates of random errors were generated.
The Chebyshev polynomials were used for generating the basis functions. The basis
functions were

¢3(j—1)+i(/1') = qbi(ﬂl)gi)j(/l’?)’ i = 1’2737 ] = 172a3a

where the functions ¢; were ¢1(z) = 1, ¢o(x) = z, and ¢3(z) = 22% — 1. Let V; be the
space consisting of the functions defined on M, some subset of R2. The uniqueness of
the ordinary equation model relies on both the domain M and the space V;. If V; is
the space generated by the basis functions ts(;_1)4;(p), Mo is the set of the vectors
(p1, u2) satisfying the conic equation 2812 + 2842 + 52u1 e — 162 = 0, and M = My,
the ordinary equation model is unique. With the same basis functions and the same set
My, the ordinary equation model is not unique provided that M = R?. Nevertheless,
the ordinary equation model is unique provided that M = R? and Vy is the space
spanned by the basis functions {¢;(p) : 1 =1,2,3,4,5,7}.
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The underlying equation is equivalent to the normalized equation

1

9
;ﬁmm = Jsiom [—1340p1 () + 1daps(pe) + 52005 (pe) + 1497 ()] = 0,

where Z?:l(ﬁl*)Q = 1. The relative error ||3,(T,) — B*|ro/l8*||ge (see Nocedal and
Wright, 1999, p. 606), the ratio of the error to the size of the true coefficient vector,
was employed in the simulation study.

The means of the relative errors for different nonlinear programming methods under
different settings are provided in Table 1. The medians of the relative errors for these
methods and settings are similar to the ones given in Table 1. These methods are quite
stable if the variations of the data are small and can result in accurate fits. If the varia-
tions of the data are large and J = 1, these methods might fail to approximate the true
coefficients well and might result in poor fits, as displayed in Figure 4. In such case,
sensible approximations of the optimal solutions by the minimizers could be achieved
by increasing the number of repeated observations at each site. Ti(y;) = > 7L, y;;/n
might be accurate estimates of p,, for large n; and hence the estimators obtained by
employing large number of repeated observations might approximate the true coefhi-
cients well by Theorem 3.1. In fact, the improvements on the fits are significant by
using the number of repeated observations equal to 30. These methods can approxi-
mate the true coefficients well and can result in accurate fits as J = 30. As presented
in Table 1, for large data variations, the larger the number of repeated observations
is at each site, the smaller the relative errors are. Since the fits based on the BFGS
and Newton’s methods, respectively, are quite close, only the fits based on the BFGS
method are given in these plots.

Since the unconstrained objective function is differentiable in the study, it is not
surprising that the conjugate gradient method using the gradient information performs
well. Note that the sequence of solutions generated by the methods using conjugate
directions can converge to the true solutions in finite steps for quadratic objective func-
tions (see Bazaraa and Shetty, 1979, Theorem 8.6.3). Since the constrained objective
function is quadratic and the penalty function is the square of a quadratic function,
the quadratic approximation for the unconstrained objective function might be quite
well. This provides an explanation for the good performance of the conjugate gradient
method. Asshown in Figure 4, the conjugate gradient method provides a slightly better
fit than the ones by other methods. On the other hand, since the Newton’s method and
the quasi-Newton method involve the inverses of the Hessian matrices and associated
approximated matrices, large data variations might result in the instability of these
methods due to possibly significant changes on these inverse matrices. As displayed in
Figure 4, the BFGS method might not result in a sensible fit.

In the second simulation study, the one-dimensional wave function in Section 1 was
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The Data with Standard Deviation = 2

yij2

yijl
Fig. 4. Different nonlinear programming methods for the data with

standard deviation equal to 2: True equation (blue line); Nelder-Mead
(green ¢$); CG (blue A); BFGS (brown +).

employed and the observed data were generated by
Yijl = My T €51, Yij2 = My, + €52, Yij(3) = F(Nymﬂyiz) + €53,

i=1,...,63,7=1,...,n; = J, where u,,, and p,,, were sequences starting from 0 to
6.2 with spacing equal to 0.1, J = 1 or J = 30 was the number of repeated observations
at each site, and €;;1, €52, and ¢;j3 were independent normal random errors with zero
means and standard deviations o equal to 0.2, 1, and 2. Let the initial conditions
be F(py,,,0) = 7.5c0s(fty,,) and OF (fiy,,,0)/0py,, = —15sin(py,, ). 1000 replicates of
random errors were generated. The trigonometric functions were used for generating
the basis functions. The basis functions were

¢5(j—1)+i(#’) = ¢Z(N1)¢J(M2)’ i=1,...,5, j=1,...,9,

where the functions ¢; were ¢1(x) = 1, ¢o(x) = cos(x), ¢3(x) = cos(2x), ¢4(x) =
sin(x), and ¢5(x) = sin(2z). The solution can be expressed as

25
F(p) = Bivu(p) = T.5¢12(p) + 7-5¢0a(p).
=1

Tij(y;) = Ti(y;) = Y5y yij/ni and Tij(y;) = Ti(y,) = (X1, yija /ni, 0)" were em-
ployed. In the above setting, M = (0,6.2) x (0,6.2) could be the domain (not including
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Table 2. Relative errors for the wave equation model.

J=1 c=0.2 c=1 o=2

Data 1.53139 1.31266 1.31326
PDE+Data 0.21631 0.99435 1.03351
PDE+IC|2.20-107™|1.03-10715|9.64- 10716

J =30 oc=0.2 c=1 oc=2
Data 3.24145 1.57171 1.35731
PDE+Data 0.04394 0.19255 0.44219
PDE+IC|3.93-107(2.60 - 10~'|6.61 - 10715

the initial points and boundaries) for the solution F' and Vyy would be the collection
of random vectors with the means OM = {(11,0) : 0 < 1 < 6.2}.

The minimizer of the objective function given in expression (6) and the minimizers
of the objective function given in expression (4) with S;(8 | Ty) equal to the ones
given in expressions (5) and (6), respectively, were computed. The objective function
S5(B | Ty) given in expression (6) only contains the information provided by the data,
while the objective function given in expression (4) with S;(8 | Ty) equal to the one
given in expression (6), i.e., S(8 | T, Tn) = S2(8 | T») + So(B8 | T»), contains the
information provided by both the data and the partial differential equation. On the
other hand, the objective function given in expression (4) with S;(3 | T') equal to the
one given in expression (5), i.e., S(B | T, Ty) = S1(8 | Ty) + So(B | T), contains the
information provided by both the partial differential equation and associated initial
and boundary conditions. Note that the partial derivative in Si(8 | T») needs to
be modified in this example. As indicated by Table 2, the means of the relative errors
corresponding to the minimizers of the objective function based on the data information
only are significantly larger than the ones based on the other objective functions. Even
for the data with small variations, the wave function can not be fitted well based on
the data information only, as shown in the upper right part of Figure 3. The fits
based on the other objective functions are quite consistent with the true wave function,
as displayed by the lower left part of Figure 3 and the lower left part of Figure 5.
However, for the data with large variations, the fits based on the information provided
by the data and the partial differential equation are not consistent with the true wave
function, as shown in the upper left and lower right parts of Figure 5. On the other
hand, the minimizers of the objective function incorporating with the information from
the partial differential equation and associated initial conditions are very close to the
true coefficient vector and the fits are very consistent with the true wave function, as
displayed in the upper right and lower parts of Figure 5. The setting for the data used
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in Figure 3 and Figure 5 was J = 1. As J = 30 and o = 2, the fits based on the data
information only or both the data information and the partial differential equation
were still not consistent with the true wave function. Nevertheless, for large or medium
data variations, the larger the number of repeated observations is at each site, the
smaller the relative errors corresponding to the minimizers of the objective function
containing both the information from the data and the partial differential equation are,
as presented in Table 2.

Using Partial Differential Equation and Data Using Patrtial Differential Equation and ICs

[}

N\
5&
o
6.h20 72

A
2 0 W

F(ul,u2) vs. Fitted Values, S.D.=2

A g,

e LR
Y, #“ e

Observed Data and Fitted Values
Observed Data and Fitted Values

True Function F(ul,u2) True Function F(ul,u2)

Fig. 5. The true wave Function F(u,us) versus the fitted values based on
different objective functions: Observed data (black e); Fit using
PDE+Data (green <); Fit using PDE+IC (blue A); Fit using the data
information only (brown -+).

4.2 A Modified Example in Thermodynamics

In thermodynamics, the equation of state for an ideal gas is PV = nRT or PV =
NkpT (see Serway and Jewett, 2004, Chapter 19, Chapter 21), where P is the pres-
sure, V is the volume, T is the temperature, n is the number of moles of gas in the
sample, IV is the total number of molecules, R is the universal gas constant, and kg
is Boltzmann’s constant. Britt and Luecke (1973) employed nonlinear implicit mod-
els for the estimation of parameters in the equation which approximated the modified
equation of state for a gas, i.e., the equation (35) given in Britt and Luecke (1973).
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In this subsection, based on the data given in Blancett, Hall, and Canfield (1970) and
Hoover (1965), ordinary equation models were employed. The pressure measurements
were scaled to fall in the interval (0,1) and a large value of the penalty parameter was
pre-specified for data analyses. The objective equation is equation (39) given in Britt
and Luecke (1973). However, the goal is to discover the underlying equations based on
the pressure data satisfying

F(u’yi) - 51(1 - N*)Myilluyiz + BQ(MZMZ - N*:uyﬂ):uyﬂ:uym + My — N*:U’yiz =0,

i=1,...,k, for helium at 273.15° K and methane at 131.93° K rather than estimating
the parameters 51, 82, and N*, where k is the number of expansions, (31, 82 are some
parameters, N* is the volume ratio, and p,,, and p,,, are the mean pressures of the
(¢ — 1)th and the ith expansions, respectively. The basis functions were

w3(j*1)+i(l‘l') = ¢Z(,"L1)¢](N2)7 1= 17 2737 j - ]-7 2737

where the functions ¢; were ¢1(z) = 1, ¢2(z) = z, and ¢3(x) = 22. The conjugate
gradient method was employed. Based on the results given in Table 4 of Britt and
Luecke (1973), i.e., for helium at 273.15°K, 81 = 11.9517622, 3, = 113.9619475, N* =
1.564881, the estimated equation using the nonlinear implicit models is

Frelpy,) = —6.75132341y,, 1y, + 113.9619475(p1y,, — 1.564881 41y, ity ey
+ 1y, — 1.564881 1y, = 0,

which is equivalent to the equation

9
. 1
108422406 (p1) — 0538245 ()] = 0.

The data for 100% helium at 273.15°K given in Table I'* of Blancett, Hall, and Can-
field (1970) consists of twelve pressure measurements for each run. The relative error
181(Tn) — B* | ge /18| go for the data in each run was computed. For the two runs, the
relative errors were 3.94% and 3.46%, respectively. Similarly, based on the results given
in Table 5 of Britt and Luecke (1973) , i.e., for methane at 131.93°K, §; = —222.9,
Bo = —24358, N* = 1.14962, the estimated equation using the nonlinear implicit mod-
els is

Fme(”’yi) = 333503/“‘%1”%2 - 24358(“%2 - 1'149621{%‘1 )Nyil Hyio
Fby,, — 1.14962,,, = 0.

The relative error for the data given in Table 2 of Hoover (1965) was 5%. This indicated
that the estimated equations using the ordinary equation models were quite consistent
with the ones using the nonlinear implicit models.
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In addition, to evaluate the performance of the proposed models and methods under
different data variations, Fje(p,,) = 0 and Fine(p,,) = 0 were assumed to be the true
equations and the normal random errors were considered. The pressure data with means
satisfying the above equations corresponding to different coefficients of variation, 10%,
30% and 50%, were generated. For each coefficient of variation, 500 simulated data sets
with the number of sites equal to 11 and the number of repeated observations equal to
1 were generated and the average relative error was computed. The average relative
errors corresponding to helium at 273.15°K were smaller than 4%, while the ones
corresponding to methane at 131.93° K were smaller than 7%. As shown in the right
part of Figure 2, a sensible fit can be still obtained for the data with large coefficient
of variation corresponding to helium at 273.15° K.

5. Concluding Discussions

For the data with means satisfying unknown equations, the mathematical equation
models can be employed to obtain sensible equations for fitting the data. On the other
hand, for the known deterministic equations, the proposed models can be still useful
for fitting the experimental data subject to random variations.

The equation estimation turns out to be associated with the nonlinear program-
ming problems subject to the randomness of the coefficients. However, the nonlinear
programming problems involving the random coefficients, for instances, the random
vectors in the mathematical equation models or some measurements subject to ran-
dom variations in other situations, have not attracted much attention in the literature.
The results concerning the optimality conditions and the convergence of the methods
provide the basic theoretical facts for these problems.

If the variations of the data are large, the minimizers of the objective functions
given in expressions (1) and (4) may not be accurate estimates of the coefficient vector
B*. As indicated by Theorem 3.1 and the simulation study, the improvement on the
accuracy can be made by increasing the number of repeated observations at each site.
It is possible that the repeated observations are not available. In such situation, one
possible solution is to “cluster” the data nearly, i.e., the distances among them being
small, and then to consider the clustered data as the repeated observations at one site.

If the variations of the data are small, the algorithms employed in Section 4 perform
well. If the variations of the data or the number of basis functions are large (see No-
cedal and Wright, 1999, Chapter 5) and the objective function is differentiable, the CG
method might be a sensible choice. In particular, as a good quadratic approximation
for the objective function in the neighborhood of the true solution might exist, the CG
method might perform well, e.g. the mathematical equation models with the objective
function given in expression (1) or the linear nonhomogeneous partial differential equa-
tion models with the objective function given in expression (10). On the other hand,
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if the objective function for the mathematical equation models is not differentiable or
the gradient of the objective function or its approximation might be difficult to com-
pute, the gradient free methods, such as the Nelder-Mead algorithm or the method of
Rosenbrock (1960), could be used.
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