
Java Statistical Software (JavaStatSoft)

A. Look and Feel

B. Data Input: To Spreadsheet, From File or From Database

1. To spreadsheet

2. From file
(i)

(ii)

3. From database management system (DBMS)
(i)

(ii)

Note: the user can enter the SQL queries by pushing Query button.

C. Data Selection: Column Selection and Row Selection

(i) Column selection: clicking on column buttons

(ii) Row selection: clicking on row buttons

(iii) Selects cells within certain range: clicking on these cells

(iv) Selects inconsecutive rows or columns:
1. choosing cells of certain row or column,
2. pressing on Ctrl key to select the other rows or columns.

Note: by clicking on the blank button in the spreadsheet, all rows and
columns will be selected.

Note: several functions, including pasting, coping, moving, and
cutting the cells in the spreadsheet, are supported.

D. Statistical Analysis: Linear Regression Analysis

(i) Selects the menus

(ii) Specifies the arguments

Note: uses the keys Ctrl or Shift to select multiple variables from
the list in the dialog.

(iii) Output report, print preview, and graphical summary

(iv) Modifies output report
1. Original report

2. Enters the required texts

3. Generates new print preview

(v) Modifies graphical summary
1. Clicks on the right button of the mouse and presses on

“Properties..” item.

2. Modifies the labels of x-axis and y-axis.
3. The labels of x-axis and y-axis have been modified.

E. StatCompiler (Compile Java Source Code)

I. Two ways of compiling Java code: the compiled *.class file

can be found in the directory “users”.

(i) Enters the code directly
1. enters the class name first,
2. presses on “Class Declaration” button,
3. enters the code,
4. presses on “Compile and Run” button,
5. saves the code by pressing on “Save Source Code” button.

(ii) Loads the source code
1. loads the code by pressing on “Load Source Code” button,
2. presses on “Compile and Run” button.

The results for running the code are

II. Running the compiled *.class files in the directory

“users” directly: the source code might be compiled by

other IDEs and put in the directory.

1. Enters the class name first, for example, the class name
“FactoryMethodExample” in the figure,

2. presses on “Run *.class” button.

III. Using JAR files

1. Puts the *.jar files in the directory in which the jar file
javastatsoft_beta1.3.jar was put,

2. enters the full jar names, for example, “user.jar” in the figure
below,

3. presses on “Load” button and the classes in the loaded jar files
can be used, for example, the class “MSE” contained in
“user.jar” file being accessed by the class “RegressionMSE” in
the figure below.

F. BeanShell (Scripting Language)

Look and Feel

Writes scripts

Two ways of writing scripts:

1. enters scripts in “Bsh Workspace”,
2.
(i) invokes the editor in BeanShell by selecting “File Workspace

Editor”,
(ii) enters the scripts,
(iii) evaluates by pressing on “Evaluate Eval in Workspace”.

(i)

(ii), (iii)

G. Help System

1. Look and Feel:

2. User’s guide and API reference:

3. Glossary:

4. Course notes:

5. Full-text search:

H. Customized Graphical User Interface : A Simple Example

Adds a menu:

Suppose a statistician wants to construct a module for computing the
arithmetic operations of two input vectors and add a menu with a
menu item for the module to the window of JavaStatSoft. The menu
bar of JavaStatSoft then looks like

The dialog, including two pairs of (Button,Textfield) and one pair of
(Label,Combobox), the statistician wants to create looks like:

Note that the types of the arguments for “Data 1” and “Data 2” are
double arrays and the one for “Operator” is String. In JavaStatSoft,
the statistician only needs to focus on how to obtain the results based
on the arguments specified by the user, not for creating the GUI. The
statistician can add a menu for the module to JavaStatSoft by the
following steps.
1. Selects “File-->Add (Remove) User’s Menu Items” and enters the

texts for the menu and menu item and the name of the only class
“MyDataOperation” the statistician needs to construct.

2. A dialog for specifying the components of the dialog invoked as

selecting the item “Simple Data Operation” will be brought up
automatically. To create the dialog for the item “Simple Data
Operation”, the statistician needs to specify the components and
associated texts.

Note: as the component is the pair of (Label,Combobox), the text
entered in the textfield of “Component Text” has the form

label text;item text; item text; item text

3. The menu and item will be added to the menu bar of JavaStatSoft.

The last thing the statistician needs to do is to create the class
“MyDataOperation”. The source code can be found in the
directory “examples\pluggable”or clicking here.
The above code mainly performs arithmetic operations of the
input vectors which can be obtained from the arguments specified
by the user. The following is the result as the user inputs two
vectors and obtains the sum of the two vectors.

Note: the statistician can compile the source code by StatCompiler
in JavaStatSoft. Alternative, the user can use any Java IDE
(Integrated Development Environment) to compile the code,
then put the *.class file in the directory “users”.

Removes a menu:

The statistician can remove the added menu by selecting “File-->Add
(Remove) User’s Menu Items”, entering the texts of the menu to be
removed and checking with the “Remove” checkbox.

I. Customized GUI: More Complicated Examples

Adds a menu with several menu items:

Suppose a statistician wants to add a menu with 3 menu items for 3
modules, one for simple arithmetic operations of two input vectors
and the other two for fitting a Cox proportional hazards regression
model and for calculating the Kaplan-Meier estimates of survival
function, respectively. The menu bar of JavaStatSoft then looks like

The dialog, including two pairs of (Button,Textfield) and one pair of
(Label,Combobox), for the simple data operation looks like

The dialog, including one separator, two pairs of (Button,Textfield)
and one pair of (Button,List), for fitting a Cox proportional hazards
regression model looks likes:

The types of the arguments for “Time”, “Censor” and “Covariate”
are all double arrays.

The dialog, including one separator, two pairs of (Button,Textfield)
and one pair of (Label,Textfield), for calculating the Kaplan-Meier
estimates of survival function looks like

The types of the arguments for “Time” and “Censor” are double
arrays and the one for “Level” is double.

The statistician can add a menu for these modules to JavaStatSoft by
the following steps.

1. Selects “File-->Add (Remove) User’s Menu Items” and enters the

texts for the menu and menu items and the names of the classes
“MyDataOperation”, “MyCoxRegression” and “MyKMEstiamte”
the statistician needs to construct.

2. A dialog for specifying the components of the dialogs invoked as
selecting the added items will be brought up automatically. To
create the dialogs for these items, the statistician needs to specify
the components and associated texts.

For “Simple Data Operation”,

For “Cox Regression Analysis”,

For “Kaplan-Meier Estimate”,

3. The menu and items will be added to the menu bar of
JavaStatSoft. The last thing the statistician needs to do is to create
the classes “MyDataOperation”, “MyCoxRegression”, and
"MyKMEstimate”. The source code can be found in the directory

“examples\pluggable”
or clicking

(MyDataOperation,MyCoxRegression,MyKMEstimate).

Adds a menu with a sub-menu and menu items:

Suppose a statistician wants to add a menu with 1 sub-menu and 3
menu items for the above modules. The menu bar of JavaStatSoft
then looks like

The statistician can add these components by the following.
1. Selects “File-->Add (Remove) User’s Menu Items” and enters the

texts for the menu and menu items and the names of the classes
“MyDataOperation”, “MyCoxRegression” and “MyKMEstiamte”
the statistician needs to construct.

The blank textfield for “Invoked Class” associated with item text
“Survival Analysis” indicates the component is a sub-menu. Further,
in the “Child Items” tab, two menu items “Cox Regression Analysis”
and “Kaplan-Meier Estimate” of the sub-menu “Survival Analysis”
are specified as well as the associated invoked classes,

“MyCoxRegression” and “MyKMEstimate”.
The other two steps are similar to the above example.

Note: adding multiple sub-menus with multiple items can be done
similarly.

Note: multiple menus can be added one by one. The menu bar of
JavaStatSoft with two added menus looks like

Removes a menu:

The statistician can remove the added menu by selecting “File-->Add
(Remove) User’s Menu Items”, entering the texts of the menu to be
removed and checking with the “Remove” checkbox.

J. Customized Help System

Adds course notes:

Suppose a statistician wants to add his (or her) course notes to the
help system. The help system then looks like

The steps to add the course notes to the help system are as follows .
1. Puts all the *.html files for the course in the directory

“\help\doc\userFiles”.
2. Modifies the XML file, “statisticsGuidetoc.xml” in the directory

“\help\doc”, as shown below. The statistician can use the file
“myNotestoc.xml” in the directory “\help\doc\userFiles” as a
template file. The contents of the file “myNotestoc.xml” can be
copied to the file “statisticsGuidetoc.xml”. Basically, the
statistician mainly specifies the texts to be displayed in the help
system and the id associated with URL. For example, the text is
"Chapter 1.1" and the id associated with the HTML file for this
course note is “ch1-1”, as specified by

<tocitem target="ch1-1" image="topic" text="Chapter 1.1"/>

3. Modifies the XML file, “Map.map” in the directory “\help\doc”,

as shown below. The statistician can use the file “myMap.map” in
the directory “\help\doc\userFiles” as a template file. The contents
of the file “myMap.map” can be copied to the file “Map.map”.
The statistician mainly specifies the id associated with URL in the
map file. For example, the HTML file “ch1-1.html” in the
directory “\help\doc\userFiles” is associated with id “ch1-1”, as
specified by

 <mapID target="ch1-1" url="userFiles/ch1-1.html" />

import java.util.Vector;

import statsoft.user.PluggableDataAnalysis;

public class MyDataOperation extends PluggableDataAnalysis

{

 public String [][] createReportData(Vector arguments)

 {

 double[] vectorOne = (double[]) arguments.get(0);

 double[] vectorTwo = (double[]) arguments.get(1);

 String operator = (String) arguments.get(2);

 int size=Math.max(vectorOne.length,vectorTwo.length);

 String[][] reportData=new String[size+1][];

 reportData[0]=new String[]{"Vector 1","Vector 2","Result"};

 if(operator.equalsIgnoreCase("+"))

 for(int i=1; i <= size; i++)

 reportData[i]=new String[]{

 Double.toString(vectorOne[i-1]),

 Double.toString(vectorTwo[i-1]),

 Double.toString(vectorOne[i-1]+vectorTwo[i-1])};

 else if(operator.equalsIgnoreCase("-"))

 for(int i=1; i <= size; i++)

 reportData[i]=new String[]{

 Double.toString(vectorOne[i-1]),

 Double.toString(vectorTwo[i-1]),

 Double.toString(vectorOne[i-1]-vectorTwo[i-1])};

 else

 for(int i=1; i <= size; i++)

 reportData[i]=new String[]{

 Double.toString(vectorOne[i-1]),

 Double.toString(vectorTwo[i-1]),

 Double.toString(vectorOne[i-1]*vectorTwo[i-1])};

 return reportData;

 }

}

import java.util.Vector;

import statsoft.user.PluggableDataAnalysis;

import javastat.util.DataManager;

import javastat.survival.regression.CoxRegression;

public class MyCoxRegression extends PluggableDataAnalysis

{

 public String [][] createReportData(Vector arguments)

 {

 double[] time = (double[]) arguments.get(0);

 double[] censor = (double[]) arguments.get(1);

 DataManager dataManager=new DataManager();

 double [][] covariate=(double[][]) arguments.get(2);

 CoxRegression coxRegression=new CoxRegression(time,censor,covariate);

 String [][] reportData= new String[coxRegression.coefficients.length + 1][5];

 reportData[0] = new String[] {"Coefficients", "Value",

 "Std. Error", "Z", "P-value"};

 for (int j = 0; j < coxRegression.coefficients.length; j++)

 {

 reportData[j + 1][0] = "b" + (j + 1);

 reportData[j + 1][1] = Double.toString(

 dataManager.roundDigits(coxRegression.coefficients[j], 3.0));

 reportData[j + 1][2] = Double.toString(dataManager.roundDigits(

 Math.pow(coxRegression.variance[j][j], 0.5), 3.0));

 reportData[j + 1][3] = Double.toString(

 dataManager.roundDigits(coxRegression.testStatistic[j], 3.0));

 reportData[j + 1][4] = Double.toString(

 dataManager.roundDigits(coxRegression.pValue[j], 3.0));

 }

 return reportData;

 }

}

import java.util.Vector;

import statsoft.user.PluggableDataAnalysis;

import javastat.util.DataManager;

import javastat.survival.KaplanMeierEstimate;

public class MyKMEstimate extends PluggableDataAnalysis

{

 public String [][] createReportData(Vector arguments)

 {

 double[] time = (double[]) arguments.get(0);

 double[] censor = (double[]) arguments.get(1);

 DataManager dataManager=new DataManager();

 double level = ((Double) arguments.get(2)).doubleValue();

 KaplanMeierEstimate kaplanMeierEstimate=new KaplanMeierEstimate(level,time,censor);

 int[] orderIndex = dataManager.orderIndex(kaplanMeierEstimate.time);

 String[][] reportData= new String[kaplanMeierEstimate.time.length + 1][4];

 reportData[0] = new String[] {"Time", "Estimate","Std. Error", "Interval"};

 for (int j = 0; j < kaplanMeierEstimate.time.length; j++)

 {

 reportData[j + 1][0] = Double.toString(

 dataManager.roundDigits(kaplanMeierEstimate.time[orderIndex[j]], 3.0));

 reportData[j + 1][1] = Double.toString(

 dataManager.roundDigits(kaplanMeierEstimate.estimate[orderIndex[j]],3.0));

 reportData[j + 1][2] = Double.toString(

dataManager.roundDigits(Math.pow(kaplanMeierEstimate.variance[orderIndex[j]], 0.5),

3.0));

 reportData[j + 1][3] = "[" + Double.toString(

dataManager.roundDigits(

kaplanMeierEstimate.confidenceInterval[orderIndex[j]][0], 3.0)) + "," +

Double.toString(dataManager.roundDigits(

kaplanMeierEstimate.confidenceInterval[orderIndex[j]][1], 3.0)) +"]";

 }

 return reportData;

 }

}

	Java Statistical Software (JavaStatSoft)
	A. Look and Feel
	B. Data Input: To SpreadSheet, From File, or From Database
	1. To spreadsheet
	2. From file
	3. From database management system (DBMS)

	C. Data Selection: Column Selection and Row Selection
	(i) Column selection: clicking on column buttons
	(ii) Row selection: clicking on row buttons
	(iii) Selects cells within certain range: clicking on these cells
	(iv) Selects inconsecutive rows or columns

	D. Statistical Analysis: Linear Regression Analysis
	(i) Selects the menus
	(ii) Specifies the arguments
	(iii) Output report, print preview, and graphical summary
	(iv) Modifies output report

	(v) Modifies graphical summary

	E. StatCompiler (Compile Java Source Code)
	I.
Two ways of compiling Java code
	(i) Enters the code directly
	(ii) Loads the source code
	Result for running the code

	II.
Running the compiled *.class files
	III.
Using JAR files

	F. BeanShell (Scripting Language)
	Look and Feel
	Writes scripts
	Demonstration

	G. Help System
	1. Look and Feel
	2. User's Guide and API reference
	3. Glossary
	4. Course notes

	5
. Full-text search

	H. Customized Graphical User Interface: A Simple Example
	Adds a menu
	Removes a menu

	I. Customized GUI: More Complicated Examples
	Adds a menu with several menu items
	Adds a menu with a sub-menu and menu items
	Removes a menu

	J. Customized Help System

	Appendices
	MyDataOperation.java
	MyCoxRegression.java
	MyKMEstimate.java

